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Abstract. The issues in science learning are not solely related to individual factors but
involve interacting factors, where both internal factors, such as self-efficacy, motivation,
epistemological beliefs, and curiosity, as well as external factors such as learning media and
technology readiness, dynamically interact to shape students’ perceptions and impact their
learning. This study identifies and analyzes the factors influencing school science teaching,
focusing on developing innovative strategies to address existing challenges. The research
method employed is a mixed-method approach, utilizing Partial Least Squares Structural
Equation Modeling (PLS-SEM) analysis to test hypotheses and in-depth interviews to
explore the challenges, issues, and expectations of science learning. The findings indicate
that curiosity significantly impacts engagement in learning (p-value = 0.003) and learning
models (p-value = 0.002), suggesting that students’ curiosity enhances their engagement in
learning and influences the selection of learning models. Motivation significantly affects
learning models (p-value = 0.011), not engagement or media usage. Furthermore, technology
readiness plays a significant role in engagement in learning (p-value = 0.002) and learning
media (p-value = 0.000), but does not influence the learning model choice. Interviews with
teachers also revealed that the primary challenge is providing appropriate media to stimulate
students, particularly for challenging topics, and the need for more interactive and real-world
problem-based media to support discovery learning more effectively.

Keywords: Discovery learning; self-efficacy; motivation; epistemological beliefs;
engagement in learning

INTRODUCTION

Science education plays a pivotal role in its implementation across many schools (Markula &
Aksela, 2022), challenges related to the preferences and the gap between the teacher’s vision and the
vision for science education need further exploration (Penuel et al., 2020). The lack of clear teaching
objectives, the absence of a philosophy of science perspective in textbooks, curriculum constraints,
and inadequate teacher-specific training (Liu et al., 2023) are factors influencing the quality of
science education, necessitating prompt solutions. Educators have also reported challenges in
teaching science education, including issues with the students themselves, general conditions, actual
teaching practices, and the qualifications of the educators (Barenthien & Dunekacke, 2022). These
reports indicate that factors influencing the quality of science education are not only related to
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curriculum aspects or educational policies (Suprapto et al., 2021) but also to individual student
factors such as motivation (Firdaus et al., 2025; Papadakis et al., 2023), self-efficacy (Haatainen et
al., 2021), and student engagement in the learning process (Lin, 2021).

Another challenge is that science learning is perceived as highly demanding, making students feel
disengaged and unmotivated (Noh et al., 2020). Epistemological beliefs become a significant concern
in science learning due to students’ limited understanding of how knowledge is acquired and
understood (Schommer, 2019). This factor is crucial in determining whether students enjoy or
comprehend science education. Students who believe knowledge is fixed and unchangeable are less
likely to embrace innovation and interactive, technology-based learning methods (Levin &
Wadmany, 2005). This factor is closely linked to students’ curiosity, as it can encourage them to
actively seek out and learn science content beyond the classroom (Kibga et al., 2021). Curiosity must
be stimulated at the outset of learning to promote this exploration.

Curiosity and inquisitiveness can leverage cutting-edge technology to captivate the enthusiasm of
both educators and researchers, thereby fostering inquiry-based classroom activities (Ruzaman &
Rosli, 2020), which can act as a stimulus for students. However, not all students or teachers can
integrate technology into learning. This readiness includes technical skills (Kaushik & Agrawal,
2021), access to adequate devices, and a positive attitude toward using technology in education
(Nikolopoulou et al., 2021). This factor requires student involvement in the learning process, as
students who actively engage in discussions, experiments, or interactions with learning media tend
to have more positive perceptions of the learning process (Cho et al., 2021; Rossi et al., 2021).

Students' perceptions of learning will form a dynamic interaction among various factors (Jansen
et al., 2014), and the complexity of this issue can influence science learning. Understanding the
relationship between internal factors (motivation and self-efficacy) and external factors (learning
media and technology readiness) is crucial, as it contributes to the quality of science education
(Swarat et al., 2012). Perception can affect how students view learning, impacting motivation and
learning outcomes (Schunk & DiBenedetto, 2020). Positive perceptions of learning media and
strategies will encourage students to become more active and engaged in the learning process (Cho
et al., 2021). Conversely, if students feel that the media or methods used are irrelevant or
uninteresting, they will likely demonstrate lower engagement (Lin, 2021; Yang et al., 2023).

Several previous studies have identified internal and external factors affecting science learning.
Britner & Pajares (2006) research shows that laboratory experiences and teacher feedback can
influence students' self-efficacy in science. This influence was further corroborated by Tsai et al.
(2011), who showed that students’ beliefs about science impact their learning approaches. Students'
beliefs require visual representations, as Rutten et al. (2012) demonstrated, where PhET simulations
effectively supported learning, emphasising physics concepts.

Research on the interaction between internal and external factors was also conducted by Jansen
et al. (2014), who explored how students’ perceptions of science learning are influenced by
motivation and self-efficacy. This research aligns with the findings of Yang et al. (2023), where
combining digital media and self-efficacy enhances student engagement in science learning.
However, studies examining the interaction between these internal and external factors are limited,
even though both are critical to science education. This study offers an opportunity to explore these
factors more deeply and reveal how they influence science learning.

This research is increasingly vital as it can provide a deeper understanding of how appropriate
learning media can stimulate student interest and attention, as well as what innovations can be
tailored to the diverse characteristics of students. Additionally, this research has the potential to offer
solutions to the challenges faced by teachers in designing more effective and engaging science
education processes. This study aims to identify and analyse the factors influencing science learning
in the discovery model at schools, focusing on developing innovative strategies to address the
existing challenges.
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METHODOLOGY
Research Design

The research design employs a mixed-methods approach, integrating quantitative and qualitative
methodologies to examine the relationships between variables while exploring the contextual
dynamics in depth (Creswell & Creswell, 2018) concerning the factors influencing science learning.
The quantitative approach tests the statistical relationships between variables, while the qualitative
approach, through in-depth interviews with teachers, aims to understand classroom dynamics that
cannot be statistically measured (Tashakkori & Teddlie, 2010). This design was chosen to provide a
more comprehensive convergent validity regarding the factors affecting science education and how
these factors interact with each other.

Population and Sample

The research population consists of eighth-grade students and teachers from junior high schools
in the Special Region of Yogyakarta for the 2025 academic year, utilising the discovery model during
the learning process. The selection of eighth-grade students is based on their age, approximately 13-
14 years, which corresponds to early adolescence. This age represents a significant period of
psychological and social development, making it a key focus for research on behavioral changes,
cognitive growth, and social development, which are closely tied to science education. The sampling
technique employed is census sampling, resulting in a sample of 179 students and teachers, as shown
in Table 1. This study uses source triangulation, involving data from students (quantitative) and data
from teachers (qualitative), to provide a more holistic perspective on the research issue. Findings
from both sources will complement each other, enhancing the research outcomes’ validity.

Table 1. Sample Demographic

Percentage

Item Response Frequency (%)
Class Type (code) VIII-A 31 17,3
VIII-B 30 16,8
VIII-C 31 17,3
VII-D 31 17,3
VIII-E 30 16,8
VII-F 26 145
Respondents’ Gender Male 85 47,5
Female 94 52,5
Lerning style Visual 38 21,2
Auditory 53 29,6
Kinesthetic 88 49,2
Information Acces Very Available 26 14,5
Available 142 79,3
Not Available 11 6,1

Very Not Available 0 0

Instrument

The primary instrument for collecting quantitative data is a questionnaire consisting of 4
scales designed to measure the variables under investigation. The questionnaire employs a 4-point
Likert scale for each item, facilitating data collection and statistical analysis. The instrument for
collecting qualitative data is an interview guide for interviewing teachers. This interview guide will
include open-ended questions to explore teachers' challenges, constraints, and needs in teaching
science.
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Data analysis
Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis was chosen for this

study to examine the complex relationships between exogenous, mediating, and endogenous
variables (Hair et al., 2019). PLS-SEM is well-suited for this research because it can handle relatively
small sample sizes (Hair et al., 2017), measure both direct and indirect effects (Hair et al., 2011), and
is compatible with exploratory models (Henseler, 2018). This study involves several variables
derived from teacher interviews and developed into factors influencing science learning when
teachers apply the discovery learning model. These variables are used to assess student perceptions
as the subjects of science learning.

Exogenous Variables (X)

X1: Self-efficacy

X2: Motivation

X3: Epistemological Beliefs

X4: Technology Readiness

X5: Curiosity

Mediating Variable (2)
Z: Engagement in Learning

Endogenous Variables ()
Y1: Perception of Learning Media effectiveness
Y2: Perception of Learning Model’s 's effectiveness

Figure 1. Research Framework

The first step in PLS-SEM analysis is to conduct validity and reliability tests of the instruments.
The analysis process begins with testing the validity and reliability of the instruments. Convergent
validity is assessed through Confirmatory Factor Analysis (CFA) with the criteria of outer loading >
0.7 and Average Variance Extracted (AVE) > 0.5 (Fornell & Larcker, 1981), while reliability is
measured using Composite Reliability (CR) > 0.7 and Cronbach’s alpha > 0.7 (Nunnally, 1978).
Model fit testing is not a requirement for PLS-SEM, as PLS-SEM emphasizes criteria such as
construct validity and reliability, as well as predictive power, as the primary indicators of model
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quality (Henseler et al., 2015). The next step is path analysis, where the path coefficients (B) and
their significance are evaluated through bootstrapping with 5000 subsamples (Hair et al., 2017).
Mediation effects are tested using Variance Accounted For (VAF), where values >20% indicate
partial mediation and values >80% indicate complete mediation (Hair et al., 2017). The model’s
predictive power is evaluated using R? (Chin, 1998) and Q2 predictive relevance (Geisser, 1975),
with effect size interpreted according to Cohen’s criteria (Cohen, 2013).

Qualitative data obtained through in-depth teacher interviews are analyzed using a thematic
approach (Braun & Clarke, 2006). The first step in this analysis is transcribing the interviews to make
the data easier to interpret. Then, the transcribed data are coded by labeling the data units relevant to
the studied topics. After coding, the researcher identifies the main themes from the interviews. These
themes are then further analyzed to understand how each theme contributes to a deeper understanding
of the challenges faced in science education.

RESULTS AND DISCUSSION
Construct Validity and Reliability

The analysis results in Table 2 present various indicators related to the construct validity and
reliability within the research model. Each construct is tested through multiple measurement items,
which are evaluated based on loadings, weights, and several other statistical indices such as
Composite Reliability (CR), Cronbach’s Alpha (CA), Average Variance Extracted (AVE), and
Variance Inflation Factor (VIF).

Table 2. Construct Validity and Reliability

Constructs Items Loadings  Weights  CA CR AVE VIF
Self-Efficacy (SE) X1.1 0.538 0.242 1.136
X1.2 0.630 0.324 1.184
X1.3 0.503 0.182 0.630 0.766 0.402 1.178
X1.4 0.739 0.417 1.235
X1.5 0.723 0.367 1.298
Motivation (Mtv) X2.1 0.686 0.315 1.349
X2.2 0.598 0.223 1.268
X2.3 0.683 0.277 0.719 0.816 0.471 1.355
X2.4 0.701 0.337 1.317
X2.5 0.754 0.298 1.486
Epistemological X3.1 0.668 0.266 1.336
Beliefs (EB) X3.2 0.702 0.336 1.282
X3.3 0.709 0.295 0.718 0.815 0.470 1.383
X3.4 0.761 0.343 1.463
X3.5 0.573 0.202 1.251
Technology X4.1 0.766 0.281 1.603
Readiness (TR) X4.2 0.767 0.271 1.608
X4.3 0.646 0.238 0.791  0.857 0.546 1.307
X4.4 0.773 0.306 1.555
X4.5 0.737 0.253 1.550
Curiosity (Csy) X5.1 0.811 0.292 1.850
X5.2 0.751 0.305 1.482
X5.3 0.697 0.192 0.807 0.866 0.564 1.558
X5.4 0.754 0.254 1.611
X5.5 0.738 0.284 1.492
Y1.1 0.666 0.326 0.691  0.800 0.451 1.237
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Constructs Items Loadings  Weights CA CR AVE VIF
Leaning Media Y12 0.715 0.304 1.358
(LMe) Y1.3 0.794 0.365 1.539
Y1.4 0.670 0.291 1.333

Y1.5 0.471 0.171 1.130

Learning Model Y2.1 0.673 0.277 1.376
(LMo) Y2.2 0.598 0.224 1.386
Y2.3 0.692 0.329 0.719 0816 0471 1.354

Y2.4 0.725 0.307 1.398

Y25 0.736 0.312 1.613

Engagement in Z1 0.600 0.220 1.271
Learning (EiL) z2 0.697 0.304 1.354
Z3 0.617 0.315 0.676 0793 0435 1.259

Z4 0.743 0.309 1519

Z5 0.629 0.369 1.209

Indicators such as X1.1, X2.1, X3.1, etc., act as observation variables used to measure and validate
larger constructs in PLS-SEM. The relationship between these indicators and constructs is crucial to
ensure that the model built accurately reflects the relationships present in the research data. Several
indicator values are slightly lower than the generally accepted standards and, such as loadings below
0.70 and Cronbach’s Alpha (CA) slightly below the ideal value of 0.70. However, in the context of
exploratory research, these values be interpreted differently, and such values can be accepted with
the justification that the goal of the research is to explore and understand phenomena in greater depth.
This result is particularly true when the constructs or instruments are in the development stage.
Exploratory research offers the flexibility to accept these values, provided there is strong justification
regarding the relevance and contribution of the items in measuring the intended construct.

The Self-Efficacy construct shows item loadings that vary, with the lowest value being 0.503 for
item X1.3 and the highest value being 0.739 for item X1.4. Although some items have loadings lower
than 0.70, such as X1.1 (0.538) and X1.3 (0.503), this can be accepted in the context of exploratory
research. The Cronbach’s Alpha (CA) value for this construct is 0.630, slightly lower than the ideal
0.70, but it is acceptable for exploratory research. The Composite Reliability (CR) value of 0.766
indicates good reliability, suggesting that this instrument is reasonably consistent in measuring the
Self-Efficacy construct. However, the Average Variance Extracted (AVE) value of 0.402 suggests
that the indicators in this construct explain less than 50% of the variance in the construct, suggesting
the potential for improving measurement in this construct in future studies. The Variance Inflation
Factor (VIF) value of 1.136 indicates no significant multicollinearity among the items.

The Motivation construct shows loading values ranging from 0.598 for item X2.1 to 0.754 for
item X2.5, demonstrating a good contribution from each item to the construct. The Cronbach’s Alpha
(CA) value of 0.719 indicates good reliability, exceeding the threshold of 0.70, which means the
construct has a sufficiently strong internal consistency. The Composite Reliability (CR) value of
0.816 affirms that the Motivation construct is highly reliable. Although the Average Variance
Extracted (AVE) value is 0.471, slightly below 0.50, it falls within the tolerance limits for exploratory
research. This construct’s Variance Inflation Factor (VIF) is 1.349, showing no significant
multicollinearity among the items.

The Epistemological Beliefs construct shows item loadings ranging from 0.573 for item X3.5 to
0.761 for item X3.4, with several items having loadings slightly below 0.70, such as X3.5 (0.573).
However, this is acceptable in the context of exploratory research. The Cronbach’s Alpha (CA) value
of 0.718 indicates reasonably good reliability, exceeding 0.70. The Composite Reliability (CR) value
of 0.815 indicates that this construct has good internal consistency. However, the Average Variance
Extracted (AVE) value of 0.470 is slightly below 0.50, indicating that the indicators in this construct
do not fully explain the variance within the construct. Nevertheless, this can be accepted in
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exploratory research. The Variance Inflation Factor (VIF) value 1.336 also indicates no significant
multicollinearity.

The Technology Readiness construct shows excellent loadings ranging from 0.646 to 0.767,
indicating strong contributions from all items in this construct. The Cronbach’s Alpha (CA) value
for this construct is 0.791, indicating excellent reliability, exceeding the 0.70 threshold. The
Composite Reliability (CR) value of 0.857 suggests that this construct has high internal consistency.
The Average Variance Extracted (AVE) value of 0.546 indicates that the construct explains more
than 50% of the variance in its indicators, suggesting that it has excellent convergent validity. The
Variance Inflation Factor (VIF) of 1.603 indicates no significant multicollinearity in this construct.

The Curiosity construct shows item loadings ranging from 0.697 to 0.811, with item X5.1 having
the highest loading value. The Cronbach’s Alpha (CA) of 0.807 indicates excellent reliability, greater
than 0.70, meaning this construct has very high internal consistency. The Composite Reliability (CR)
value of 0.866 also shows excellent reliability, proving that this instrument is highly consistent in
measuring the Curiosity construct. The Average Variance Extracted (AVE) value of 0.564 shows
that this construct is very good at explaining the variance in its indicators, indicating strong validity.
The Variance Inflation Factor (VIF) value of 1.850 indicates no significant multicollinearity in this
construct.

The Learning Media construct shows loadings ranging from 0.471 to 0.794, with item Y1.5
having the lowest loading at 0.471, indicating that this indicator is less intense in measuring the
Learning Media construct. The Cronbach’s Alpha (CA) value of 0.691 indicates reliability slightly
below 0.70, but it is still acceptable for exploratory research. The Composite Reliability (CR) of
0.800 indicates fairly good consistency, although some items show lower contributions. The Average
Variance Extracted (AVE) value of 0.451 shows that this construct is not optimal in explaining the
variance of its indicators, which should be addressed in future research. The Variance Inflation Factor
(VIF) of 1.237 indicates no significant multicollinearity.

The Learning Model construct shows loadings ranging from 0.598 to 0.736, with item Y2.2
having the lowest loading (0.598). The Cronbach’s Alpha (CA) value of 0.719 indicates good
reliability, exceeding 0.70, indicating that this construct has sufficiently strong internal consistency.
The Composite Reliability (CR) of 0.816 shows that this construct is reliable in measuring the
intended variable. The Average Variance Extracted (AVE) value of 0.471 indicates that the indicators
in this construct do not explain more than 50% of the variance, which warrant attention in future
studies. The Variance Inflation Factor (VIF) of 1.613 indicates no significant multicollinearity.

The Engagement in Learning construct shows loadings ranging from 0.600 to 0.743, with item
71 having the lowest loading (0.600) and Z4 having the highest (0.743). The Cronbach’s Alpha (CA)
of 0.676 is slightly below 0.70 but is acceptable in exploratory research. The Composite Reliability
(CR) of 0.793 indicates reasonably good internal consistency. The Average Variance Extracted
(AVE) of 0.435 suggests that the indicators in this construct are less effective in explaining the
variance, which requires attention. The Variance Inflation Factor (VIF) of 1.271 indicates no
significant multicollinearity.

Most of the constructs in this study show promising results in terms of reliability and validity,
with Cronbach’s Alpha and Composite Reliability values generally above 0.70 and Average Variance
Extracted (AVE) values indicating adequate convergent validity for most constructs. Some
constructs, such as Learning Media, Self-Efficacy, and Engagement in Learning, show lower AVE
values and loadings, suggesting a need for improvement in measurement in these constructs.
However, the low VIF values across all constructs indicate no significant multicollinearity issues,
and these results are acceptable in the context of exploratory research.

In addition to construct validity and reliability presented in Table 2, the Heterotrait-Monotrait
Ratio (HTMT) analysis serves as a crucial tool for assessing discriminant validity within Structural
Equation Modeling (SEM). Discriminant validity ensures that each construct in the model is
empirically distinct from others, indicating the absence of excessive overlap or overly strong
correlations between constructs. HTMT offers a more robust measure of discriminant validity
compared to traditional approaches, such as the Fornell-Larcker criterion, as it evaluates explicitly
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the ratio between heterotrait correlations (i.e., correlations between different constructs) and
monotrait correlations (i.e., correlations within the same construct). An HTMT value is deemed
acceptable if it falls below a certain threshold, generally 0.85 or, in some cases, 0.90, indicating
sufficient discriminant validity and suggesting that the constructs are distinct and not excessively
interrelated. Conversely, HTMT values exceeding these thresholds signal construct overlap, thereby
potentially compromising the model’s validity.

Table 3. Heterotrait-Monotrait Ratio (HTMT)

Csy EiL EB LMe LMo Mtv SE
Csy
EiL 0.766
EB 0.700 0.642
LMe 0.715 0.640 0.635
LMo 0.787 0.773 0.555 0.838
Mtv 0.814 0.708 0.771 0.695 0.751
SE 0.726 0.756 0.714 0.602 0.631 0.848
TR 0.641 0.716 0.622 0.839 0.523 0.568 0.619

Note: Self-Efficacy (SE); Motivation (Mtv); Epistemological Beliefs (EB); Technology Readiness (TR); Curiosity
(Csy); Leaning Media (LMe); Learning Model (LMo); Engagement in Learning (EiL)

Table 3 presents the HTMT calculation results used to evaluate discriminant validity within the
SEM framework. Most HTMT values across constructs are below 0.85, indicating strong evidence
of discriminant validity in the model. For instance, the HTMT value between Curiosity and
Engagement in Learning is 0.766, which is below the 0.85 benchmark, suggesting these two
constructs are empirically distinct and not overly redundant. Other pairings, such as those between
Motivation and Self-Efficacy (0.848) and Learning Model (0.751), show relatively high correlations
but remain within acceptable bounds, thus supporting their conceptual independence despite
moderate associations. A few HTMT values, such as that between Technology Readiness and
Learning Model (0.839), approach the threshold, potentially indicating some conceptual overlap.
Nevertheless, the majority of HTMT values, such as those between Learning Media and
Epistemological Beliefs (0.635), affirm adequate differentiation among the constructs. Overall, the
HTMT results support the discriminant validity of the constructs employed, reinforcing their
suitability for further analysis within the SEM framework.

Model fit is a crucial step in statistical analysis used to assess the degree to which an estimated
model aligns with the available data. The evaluation of model fit typically involves comparing the
estimated model with a more complex or "saturated model," which encompasses all possible
relationships among the variables. Several indicators are utilized to gauge the adequacy of the model
fit (table 4), such as SRMR (Standardized Root Mean Square Residual), d_ULS, d_G, Chi-square,
and NFI (Normed Fit Index).

Table 4. Model Fit

Saturated model Estimated model
SRMR 0.086 0.087
d ULS 6.057 6.244
d G 1.616 1.644
Chi-square 1502.229 1520.068
NFI 0.533 0.528

Based on the results in Table 4 derived from the model fit table, the model fit analysis between
the saturated model and the estimated model reveals a satisfactory level of correspondence, despite
some minor discrepancies in specific indicators. The SRMR values for both models are 0.086 for the
saturated model and 0.087 for the estimated model, indicating an almost negligible difference
between the two, both of which fall within the acceptable range (an SRMR value below 0.08 is
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typically considered indicative of a good fit). This result suggests that the estimated model effectively
represents the interrelationships among the variables, closely approximating the more intricate
saturated model.

Subsequently, the d_ULS (Unweighted Least Squares) indicator for the saturated model is 6.057,
while for the estimated model it is 6.244, revealing a negligible difference and implying that both
models exhibit similar residual errors, regardless of the weights of the variables. The d_G indicator,
serving as an alternative to d_ULS by accounting for the distribution of the variables, also yields
comparable results: 1.616 for the saturated model and 1.644 for the estimated model, both of which
suggest that the estimated model exhibits an excellent fit.

The Chi-square test, which assesses how well the estimated model aligns with the observed data,
provides a value of 1502.229 for the saturated model and 1520.068 for the estimated model. Despite
the slight increase in the Chi-square value for the estimated model, this difference is marginal and
does not indicate any significant issues with model fit. Finally, the NFI value for the saturated model
is 0.533, while for the estimated model, it is 0.528, reflecting a slight decrease in the estimated model.
However, both values remain within an acceptable range. Ideally, the NFI should be closer to 1.
Overall, these results suggest that the estimated model demonstrates an excellent fit to the data, with
minimal discrepancies when compared to the saturated model, implying that the estimated model can
be deemed a sufficiently accurate representation of the relationships among the variables.

Factors Affecting Science Learning

The path analysis results test the direct relationships between the variables involved in this
research model. This path analysis aims to identify each variable’s direct effects on the others and
determine the significance of these relationships. The path analysis values indicate the strength of
the relationships between the variables, while the p-value assesses the statistical significance of these
relationships (Figure 2).
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Figure 2. Testing Hypothesis
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Table 5. Path Coefficient

Sample mean Standard deviation T statistics
Csy -> EiL 0.287 0.095 3.022
Csy > LMe 0.184 0.105 1.719
Csy -> LMo 0.337 0.107 3.135
EiL-> LMe 0.009 0.094 0.093
EiL-> LMo 0.228 0.094 2.463
EB-> EiL 0.061 0.092 0.639
EB-> LMe 0.093 0.090 0.996
EB-> LMo -0.017 0.089 0.200
Mtv -> EiL 0.091 0.098 0.939
Mtv -> LMe 0.173 0.115 1.536
Mtv -> LMo 0.212 0.086 2.536
SE-> EiL 0.154 0.080 1.815
SE-> LMe 0.001 0.082 0.006
SE-> LMo 0.062 0.090 0.606
TR->EiL 0.256 0.084 3.084
TR-> LMe 0.412 0.090 4.497
TR-> LMo -0.014 0.089 0.214

The relationship between Curiosity and Engagement in Learning shows a significant result, with
a p-value of 0.003, much smaller than the 0.05 threshold. The T-statistic value of 3.022 also indicates
a strong and significant relationship. This result suggests that curiosity has a strong positive influence
on engagement in learning. Therefore, it can be concluded that the higher an individual’s curiosity,
the greater the likelihood that students will engage in the learning process. This finding aligns with
the Self-Determination Theory (SDT), which states that curiosity, as intrinsic motivation, encourages
active engagement (Ryan & Deci, 2020). Empirical studies by Litman (2005) also confirm that
students with high curiosity tend to be more exploratory in their learning.

The relationship between Curiosity and Learning Media shows a non-significant result (p-value
= 0.086). Although these two variables have a positive influence, the p-value greater than 0.05
suggests that the effect is not strong enough to be considered significant. This result indicates that
while curiosity influence the use of learning media, its impact is not substantial within the context of
this study.

The relationship between Curiosity and Learning Model shows a significant positive effect (p-
value = 0.002, T-statistics = 3.135). The very small p-value and high T-statistics confirm this
relationship is statistically significant. This result means that individuals with high curiosity tend to
prefer or become more engaged with specific learning models, emphasizing the importance of
curiosity in shaping one’s approach to learning. This finding is supported by von Stumm et al. (2011),
who found that inquisitive individuals are likelier to choose inquiry-based learning methods.

The relationship between Engagement in Learning and Learning Media shows no significant
result (p-value = 0.926), indicating no direct and strong relationship between engagement in learning
and the use of learning media in this study. Similar results were found for the relationships between
Epistemological Beliefs and Engagement in Learning (p-value = 0.523) and Learning Media (p-value
= 0.319), showing no significant influence. In other words, epistemological beliefs, or one’s views
about knowledge, do not have a substantial enough impact on student engagement in learning or the
use of learning media.

Additionally, the relationship between Epistemological Beliefs and Learning Model is not
significant (p-value = 0.842), suggesting that one’s view on how knowledge should be learned does
not directly influence the learning model chosen by students. This finding implies that
epistemological beliefs not be a significant factor in selecting or accepting a particular learning
model. This result contrasts with previous studies (Hofer, 2000), suggesting that epistemological
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beliefs affect learning approaches. The insignificance of this relationship also be due to the specific
context of science learning in Indonesia, which is more structured (Tsai et al., 2011), and the less
sensitive measurement of the construct (Schommer-Aikins, 2004).

However, the relationship between Motivation and Learning Model shows a significant result (p-
value = 0.011, T-statistics = 2.536), indicating that motivation significantly influences the choice or
acceptance of learning models. This result is consistent with the Expectancy-Value Theory (Eccles
& Wigfield, 2002), which suggests that motivation affects the selection of learning strategies.
However, the relationship between Motivation and Engagement in Learning (p-value = 0.348) and
Learning Media (p-value = 0.125) is insignificant, indicating that while motivation plays a crucial
role in selecting learning models, it does not significantly influence engagement levels or the use of
learning media. This result is likely because extrinsic motivation is insufficient to drive deep
engagement (Deci et al., 1999).

The relationship between Self-Efficacy and Engagement in Learning shows a p-value of 0.070,
slightly greater than 0.05. This result supports Bandura’s theory (Bandura, 1997) that self-efficacy
plays a role in learning perseverance, but other factors moderate its effects. Although there is a
positive influence between Self-Efficacy and Engagement in Learning, the effect is only marginally
significant and needs further exploration in future research. On the other hand, the relationships
between Self-Efficacy and Learning Media (p-value = 0.995) and Learning Model (p-value = 0.545)
are insignificant, indicating that self-confidence does not directly influence the use of learning media
or the chosen learning model.

Meanwhile, Technology Readiness shows significant results in its relationship with Engagement
in Learning (p-value = 0.002, T-statistics = 3.084) and Learning Media (p-value = 0.000, T-statistics
= 4.497). This result indicates that technology readiness significantly influences engagement in
learning and the use of learning media. These results are consistent with studies by Parasuraman
(2000) and Dwivedi et al. (2019) regarding the role of technology in enhancing learning participation.
High technology readiness tends to encourage individuals to engage more in learning and prefer or
use the available learning media. However, the relationship between Technology Readiness and
Learning Model is insignificant (p-value = 0.831), suggesting that technology readiness does not
directly influence the learning model choice.

The path analysis results show that variables such as Curiosity, Motivation, and Technology
Readiness significantly affect several aspects of learning, particularly in the Learning Model and
Learning Media. However, other relationships, such as those between Epistemological Beliefs, Self-
Efficacy, and Learning Media, do not show significant effects, suggesting that these factors not play
a strong role in determining the selection or use of learning models and media. These findings provide
important insights into the factors influencing the learning process and can be used to design more
effective learning strategies based on the variables that have been proven significant.

The findings of this study are supported by interviews with teachers, which provide a deeper
understanding of the challenges faced in science education, particularly regarding learning models,
learning media, and how student characteristics affect the learning process. One key finding from the
interviews is that the implemented learning model strongly influences students’ needs. However,
teachers face significant difficulties finding the right media or resources to stimulate students before
the learning process begins, especially for more complex and abstract materials.

The Relationship Between Learning Models, Media Limitations, and Student Needs

The analysis process begins with transcribing the interviews to make the data easier to analyze,
followed by coding to assign labels to data units relevant to the studied topics. After coding, the
researcher identifies the main themes that emerge from the interviews, which are then further
analyzed to understand how each theme provides deeper insights into the challenges faced in science
education, particularly when implementing the discovery learning model. Table 6 presents the key
findings obtained from the thematic analysis of the teacher interviews.
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Table 6. Theme Result
Theme Description Key Points

The discovery learning model increases  Student Engagement, Problem
student engagement in problem-based Solving, Discovery-Based
and discovery-based learning. Approach

Limitations in media that can stimulate
Limitations of students before learning begins, as well
Learning Media as a lack of suitable materials on
common platforms.

Learning Model:
Discovery Learning

Material Access Limitations,
Media Quality Limitations,
Language Issues

Student Engagement with

Need for Interactive and engaging media that can . AR
. . 7o R Interactive Media, Visualization
Appropriate stimulate students’ critical thinking is .
. . . . . of Complex Material, Resource
Learning Media required, especially for complex material. ;. =" "
Limitations
The development of more comprehensive Innovation in Media
Development of learning media that aligns with the Development, Teacher Training,
Learning Media characteristics of learning models, such  Collaboration with External
as discovery learning. Parties
Collaboration and Collaboration between schools and Enhancing Collaboration,
external parties to obtain relevant and Affordable Access for All
Resources
affordable student resources. Students
Challenges in The main challenge is the lack of suitable
ges media to effectively support the Media Limitations in Model
Implementing . . ; . .
implementation of the discovery learning Implementation

Discovery Learning model

One of the key findings from the interviews is that the learning model applied in the classroom
significantly influences how students learn, and therefore, students’ needs vary according to the
approach used. Teachers often choose the discovery learning model to teach science content. This
model, which emphasizes a problem-based and discovery approach, is highly effective in increasing
student engagement. Students do not merely passively receive information; they are allowed to
discover concepts through practical activities, experiments, and discussions. Discovery learning
enables students to actively engage in the learning process by identifying real-world problems around
them and solving them independently. The finding that discovery learning enhances student
participation is consistent with Bruner (1961) research, which emphasizes the role of active learning
in knowledge construction. This model allows students to develop understanding through self-
directed exploration (HMELO-SILVER et al., 2007).

Although this model has proven effective in increasing student engagement, a significant
challenge teachers face is the difficulty in providing learning media that can stimulate students before
learning begins. Teachers’ difficulty in providing initial stimulation supports the criticism by
Kirschner et al. (2006) that discovery learning requires adequate scaffolding, especially for complex
content. The initial stimulus provided to students is critical in the discovery learning model because
it can enhance students’ curiosity and prepare them to engage in learning more actively. However,
not all content needed for discovery learning can be easily found on common platforms like
YouTube. Many materials are unavailable or not processed in a way that stimulates the discussions
or in-depth exploration required in discovery learning.

The interview results also show that although some learning media, such as the PhET application
for simulations, have been used, these media are not sufficient to address various learning needs,
especially for more abstract or complex content. For instance, in science education, some abstract
concepts, such as theories in physics or chemistry, require more concrete media to help students
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visualize these concepts. While PhET provides visual simulations for certain concepts, these media
often fail to cover all the aspects needed to optimize students’ understanding, especially for more
complex concepts or material that cannot be easily simulated using available tools. The limitations
of PhET simulations in visualizing abstract concepts align with er (2009)findings that the
effectiveness of multimedia depends on its alignment with students’ cognitive levels.

Additionally, limitations in the language used in learning media pose a separate issue. Some
learning media use technical or mathematical language that be difficult for students to understand
without additional explanation or teaching. When students encounter complex content that requires
basic mathematical knowledge or specialized skills, they often struggle to understand the message
conveyed through the media. The issue of understanding technical language reinforces Sweller
(2010) cognitive load theory, where overly complex material can overload students’ working
memory (Firdaus, Amelia, et al., 2025). Therefore, while various resources are available on the
internet, not all are adequate to support discovery learning, requiring richer stimuli to trigger critical
thinking and in-depth discussions. Media is needed based on the cognitive theory of multimedia
learning (CTML), which integrates text, visuals, and interactivity (er, 2009).

Media Needs Suitable for Learning Models

Teachers stated that the learning media needed must be able to provide initial stimuli to students,
so they are better prepared to engage in discovery-based learning activities and discussions.
However, the existing media are often limited and do not always match the learning model’s
characteristics. Students need more interactive and engaging media to introduce them to real-world
problems relevant to the studied material and facilitate deep exploration. This result is significant for
discovery learning, which requires stimuli that allow students to formulate problems, engage in
discussions, and discover solutions independently. er (2004) research on prior knowledge activation
in learning supports the finding that discovery learning requires strong initial stimuli. Teachers need
media that can trigger students’ curiosity (Kang et al., 2009), present contextual problems (Hmelo-
Silver, 2004), and facilitate scaffolding (Quintana et al., 2004).

Teachers revealed that videos or other media sources that can stimulate students’ understanding
of more complex content are greatly needed, but the available resources often do not cover all the
aspects needed to deliver the material in depth. Teachers also mentioned that visualization media for
highly technical content or concepts requiring complex conceptual understanding are essential.
Therefore, developing more innovative learning media, aligned with the characteristics of students
and the learning models, is crucial to address these gaps. The limitations of visualization media for
abstract concepts align with Kozma (2003) findings on the importance of multimodal representation,
Ainsworth (2006) work on the functions of multiple representations, and de Jong et al. (2014)
regarding inquiry-based simulations.

Based on these findings, teachers suggest that to improve the quality of science learning, more
comprehensive learning media must be developed that align with the applied learning model, such
as discovery learning. Developing innovative media that can provide more effective stimuli is crucial,
especially when teaching abstract or complex content. Teachers also expect further training on
developing or adapting learning media to meet specific students’ needs, particularly in terms of
visualizing material that is difficult to comprehend through theory or verbal explanations alone.
Teachers’ suggestions about the need for innovative media are supported by Plass et al. (2020)
principles of multimedia learning and Chen et al. (2019) on adaptive learning technologies.

Moreover, it is important to enhance collaboration between schools and external parties, such as
educational communities or offices, to obtain more relevant and suitable resources for learning needs.
Teachers hope that the existing learning media can be more interactive, practical, affordable, and
sufficient for all student characteristics, so that all students, regardless of their learning style, can
gain maximum benefit.

Although the discovery learning model has proven effective in increasing student engagement,
providing the right learning media remains one of the main challenges teachers face. Students’
learning needs greatly depend on the learning model used, but the learning process cannot proceed
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optimally without appropriate media to stimulate students. Therefore, there is a need for the
development of more relevant and innovative learning media, which can help students better
understand the material, especially complex or abstract content, and support the implementation of
more active, discovery-based learning models like discovery learning.

Exploring the Creation of Innovation

Based on the path analysis results and interviews, we can conclude that stimuli support the
learning process, particularly in the discovery learning model. The path analysis results show that
Curiosity significantly impacts Engagement in Learning and the Learning Model, indicating that
students’ curiosity plays a significant role in motivating their engagement in learning. However, to
facilitate this process, teachers face a significant challenge in providing media to stimulate students
before the learning begins. Therefore, developing effective stimulus media is essential to support the
success of discovery learning.

One key finding from the interviews is that in discovery learning, the initial stimulus process is
significant for sparking students’ curiosity and preparing them to engage actively in learning. This
stimulus motivates students and provides a context relevant to the material that will be studied.
Therefore, effective stimuli will make it easier for students to formulate questions, identify problems,
and find solutions in the discovery-based learning process.

However, although students’ curiosity significantly impacts Engagement in Learning (p-value =
0.003), the primary challenge teachers face is difficulty finding or developing the right media to
stimulate students before the learning begins, especially with abstract content. Therefore, the media
developed should be able to provide relevant stimuli and spark students’ curiosity so that they can
become more deeply involved in this learning model.

One leading solution proposed is the development of stimulus media based on real-world
problems that can be directly related to the content to be learned. The interview results indicate that
the discovery learning model requires stimulus based on real-world problems because it allows
students to discover and solve issues relevant to their lives. The use of documentary videos or real-
world simulations presenting problems that students can study and solve is very effective in sparking
students’ curiosity.

For example, in science education, a video showing a natural phenomenon or a science
experiment that triggers interesting questions could be used to provide the necessary stimulus. These
videos should be presented challengingly, sparking curiosity, so students feel motivated to explore
and discover the answers during the learning process. With real-world problem-based stimuli,
students can connect learning to real life more easily and become more engaged in discovery learning
activities.

The interview results also found that collaboration with external parties, such as educational app
developers or educational communities, is crucial for enhancing the quality of stimulus media used
in learning. This collaboration can include the provision of technology-based teaching materials that
are more in line with the needs of the discovery learning model. For instance, collaboration with
virtual simulation development companies or web-based educational platforms can produce richer
and more engaging stimulus media.

Furthermore, collaboration between schools and other educational institutions can help provide
more relevant and innovative resources (Firdaus, 2025), such as training courses for teachers on
utilizing available stimulus media to support discovery-based learning models. With the help of
technology and external resources, more varied and effective stimulus media can be developed to
assist students in the learning process.

To support the success of the discovery learning model, it is vital to develop stimulus media that
aligns with the characteristics of students and the material being taught. Based on the path analysis
results and interviews, Curiosity and Technology Readiness play significant roles in increasing
student engagement, and therefore, the media used to stimulate students must be able to spark
students’ curiosity and enhance active interaction in the learning process. Developing real-world
problem-based media, interactive simulations, and collaboration with external parties are key to
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creating effective media that supports discovery learning. Additionally, teacher training using
relevant stimulus media is crucial in creating a more optimal learning experience.

To enhance science learning, particularly within the context of the Discovery Learning model,
various aspects of innovation must be considered. Innovations in science education aim to create a
more interactive, engaging, and practical learning experience. The following table 7 outlines several
aspects of innovation required to support and strengthen the learning process, along with concrete
steps that can be taken to achieve these goals.

Table 7. Innovation Framework

No Aspect of Innovation

Required Innovation

Identification of Factors Affecting

Development of learning media that stimulates

1 Science Learning in Discovery Model  curiosity and supports student engagement.
- . . Development of multimedia-based media and
Building Learning Media Relevantto . A . ;
2 Di . interactive simulations that ease the understanding
iscovery Learning R .
of scientific material.
Utilization of Technology to Enhance Integration of technology :imd educ_atlonal
3 . . platforms to support students' exploration of
Engagement in Learning S
materials in a more contextual manner.
. . Collaboration with educational app developers and
Enhancing Learning through . M
4 . other educational institutions to create more
Collaboration and External Resources . . .
innovative media.
. Organizing training for teachers on the use and
5 Teacher Training and Competence adaptation of learning media and the latest
Development
technology.
6 Evaluation and Improvement of Continuous evaluation and refinement of learning
Learning Models and Media media and the models used.
Creation of Problem-Based Learnin Development of videos and simulations of real-
7 9 world problems relevant to the material taught to

Media for Real-World Issues . e
trigger students' curiosity.

Research Limitation

Several indicators suggest values below the generally accepted standards, potentially impacting
the construct validity of the measurement. In the Self-Efficacy (SE) construct, several items exhibit
factor loadings lower than 0.70, such as item X1.3 (loading = 0.503). This value indicates that the
item contributes less to the measured construct due to various factors. The item is less pertinent, thus
failing to adequately represent the dimension intended in the construct. Additionally, the sample
population used lacks consistent experiences or perceptions concerning the item. This weakens the
item’s relationship with the construct it is supposed to measure, thereby compromising the accuracy
of the Self-Efficacy measurement.

Furthermore, Cronbach’s Alpha (CA), which is slightly below 0.70 for certain constructs, such as
Self-Efficacy (CA = 0.630), indicates lower internal reliability than the ideal threshold typically
accepted. A lower CA can stem from inconsistencies in item responses or substantial variability
between items measuring the same construct. For some constructs, items with divergent
characteristics or focuses reduce the CA value, as these items are weakly correlated with one another.

The Average Variance Extracted (AVE) for several constructs also yields suboptimal results,
falling well below the 0.50 threshold. This is due to the presence of items with low measurement
quality, resulting in their inability to account for the majority of the variance within the construct. A
low AVE can also be attributed to an insufficient or unrepresentative sample size, which hinders the
optimal relationship between items and the construct. In this context, while these items be acceptable
in exploratory research, the low AVE values suggest that the construct validity requires further
enhancement.
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Implication for Practice

Educators must design instructional strategies that stimulate students’ curiosity, particularly
during the initial stages of learning. The use of learning media that sparks curiosity, such as
experimental videos or real-world problems relevant to the topic being studied, can enhance student
engagement. Curriculum designers should consider integrating elements that foster students’
inquisitiveness, such as incorporating problem-based tasks that encourage students to explore and
discover scientific concepts. Policymakers should also allocate resources to support the development
and dissemination of learning materials that stimulate curiosity and optimize students’ learning
experiences.

Moreover, this study reveals that interactive learning media, aligned with the discovery-based
learning model, can significantly enhance students’ comprehension. Teachers should be trained to
select and utilize media that not only conveys information but also encourages students to engage in
critical thinking and active participation in learning. Curriculum developers must create materials
that not only align with learning objectives but also support the use of diverse media, such as
simulation applications or interactive multimedia tools, which enable students to grasp complex and
abstract scientific concepts more effectively. Policymakers should ensure that the curriculum
accommodates technological advancements that can enrich students’ learning experiences.

Teacher training also plays a crucial role in the successful implementation of the research
findings. Educators must be equipped with the skills to utilize technology-based learning media and
effectively integrate them into their everyday instructional practices. Teacher training curricula
should include the use of technology and the development of media suited to the characteristics of
students and the needs of discovery-based learning. Curriculum designers must ensure that teacher
training programs facilitate the development of practical skills related to the effective use of
technology in education. Meanwhile, policymakers need to support continuous training programs to
enable teachers to optimize the use of these tools in the learning process.

CONCLUSION AND LIMITATIONS
Conclusion

This study reveals that various factors significantly influence science learning, particularly in the
context of the discovery learning model. Curiosity has a substantial positive effect on student
engagement and the choice of learning models, emphasizing the importance of intrinsic motivation
in enhancing the learning experience. Technology readiness is another critical factor, showing a
significant impact on engagement and the use of learning media, reinforcing the role of technology
in facilitating active participation in the learning process. Motivation also plays a key role in selecting
learning models, but its influence on engagement and media use is less pronounced. Conversely,
factors like epistemological beliefs and self-efficacy showed minimal direct effects on engagement
or the choice of learning media, suggesting that they not be as influential in the context of science
learning in this study. Additionally, while discovery learning is a practical approach, the challenge
remains in providing suitable media that can stimulate curiosity and engagement, especially for
complex and abstract concepts.

The findings are further supported by interviews with teachers, which underscore the critical need
for effective learning media that can spark students’ curiosity and enhance their engagement.
Teachers face significant challenges in providing the necessary stimuli before learning begins,
particularly when dealing with abstract content. Therefore, there is a pressing need for innovative
media that aligns with the discovery learning model, providing real-world problem-based stimuli to
facilitate deep exploration and active learning.

Limitations

Despite the valuable insights gained from this study, several limitations should be acknowledged.
Firstly, the sample size and context, which are specific to certain schools and regions, limit the
generalizability of the findings to other educational settings. The study’s focus on specific variables
such as curiosity, motivation, and technology readiness overlook other potential factors influencing
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learning outcomes, such as social influences or cultural contexts. Furthermore, the study primarily
relied on self-reported data from both students and teachers, which be subject to bias and
inaccuracies. Another limitation is the lack of longitudinal data, as the study only provides a snapshot
of the current situation without considering how the factors influencing learning evolve. Lastly, while
the study highlighted the challenges teachers face in finding suitable media for discovery learning, it
did not extensively explore potential solutions for overcoming these challenges or evaluate the
effectiveness of existing media in a more controlled environment. Further research could address
these limitations by exploring a broader range of factors, employing a more diverse sample, and
considering the long-term effects of various learning models and media on student engagement and
learning outcomes.
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