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Abstract. The issues in science learning are not solely related to individual factors but 

involve interacting factors, where both internal factors, such as self-efficacy, motivation, 

epistemological beliefs, and curiosity, as well as external factors such as learning media and 

technology readiness, dynamically interact to shape students’ perceptions and impact their 

learning. This study identifies and analyzes the factors influencing school science teaching, 

focusing on developing innovative strategies to address existing challenges. The research 

method employed is a mixed-method approach, utilizing Partial Least Squares Structural 

Equation Modeling (PLS-SEM) analysis to test hypotheses and in-depth interviews to 

explore the challenges, issues, and expectations of science learning. The findings indicate 

that curiosity significantly impacts engagement in learning (p-value = 0.003) and learning 

models (p-value = 0.002), suggesting that students’ curiosity enhances their engagement in 

learning and influences the selection of learning models. Motivation significantly affects 

learning models (p-value = 0.011), not engagement or media usage. Furthermore, technology 

readiness plays a significant role in engagement in learning (p-value = 0.002) and learning 

media (p-value = 0.000), but does not influence the learning model choice. Interviews with 

teachers also revealed that the primary challenge is providing appropriate media to stimulate 

students, particularly for challenging topics, and the need for more interactive and real-world 

problem-based media to support discovery learning more effectively. 

 

Keywords: Discovery learning; self-efficacy; motivation; epistemological beliefs; 

engagement in learning 

 

 

INTRODUCTION  
Science education plays a pivotal role in its implementation across many schools (Markula & 

Aksela, 2022), challenges related to the preferences and the gap between the teacher’s vision and the 

vision for science education need further exploration (Penuel et al., 2020). The lack of clear teaching 

objectives, the absence of a philosophy of science perspective in textbooks, curriculum constraints, 

and inadequate teacher-specific training (Liu et al., 2023) are factors influencing the quality of 

science education, necessitating prompt solutions. Educators have also reported challenges in 

teaching science education, including issues with the students themselves, general conditions, actual 

teaching practices, and the qualifications of the educators (Barenthien & Dunekacke, 2022). These 

reports indicate that factors influencing the quality of science education are not only related to 
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curriculum aspects or educational policies (Suprapto et al., 2021) but also to individual student 

factors such as motivation (Firdaus et al., 2025; Papadakis et al., 2023), self-efficacy (Haatainen et 

al., 2021), and student engagement in the learning process (Lin, 2021). 

Another challenge is that science learning is perceived as highly demanding, making students feel 

disengaged and unmotivated (Noh et al., 2020). Epistemological beliefs become a significant concern 

in science learning due to students’ limited understanding of how knowledge is acquired and 

understood (Schommer, 2019). This factor is crucial in determining whether students enjoy or 

comprehend science education. Students who believe knowledge is fixed and unchangeable are less 

likely to embrace innovation and interactive, technology-based learning methods (Levin & 

Wadmany, 2005). This factor is closely linked to students’ curiosity, as it can encourage them to 

actively seek out and learn science content beyond the classroom (Kibga et al., 2021). Curiosity must 

be stimulated at the outset of learning to promote this exploration. 

Curiosity and inquisitiveness can leverage cutting-edge technology to captivate the enthusiasm of 

both educators and researchers, thereby fostering inquiry-based classroom activities (Ruzaman & 

Rosli, 2020), which can act as a stimulus for students. However, not all students or teachers can 

integrate technology into learning. This readiness includes technical skills (Kaushik & Agrawal, 

2021), access to adequate devices, and a positive attitude toward using technology in education 

(Nikolopoulou et al., 2021). This factor requires student involvement in the learning process, as 

students who actively engage in discussions, experiments, or interactions with learning media tend 

to have more positive perceptions of the learning process (Cho et al., 2021; Rossi et al., 2021). 

Students' perceptions of learning will form a dynamic interaction among various factors (Jansen 

et al., 2014), and the complexity of this issue can influence science learning. Understanding the 

relationship between internal factors (motivation and self-efficacy) and external factors (learning 

media and technology readiness) is crucial, as it contributes to the quality of science education 

(Swarat et al., 2012). Perception can affect how students view learning, impacting motivation and 

learning outcomes (Schunk & DiBenedetto, 2020). Positive perceptions of learning media and 

strategies will encourage students to become more active and engaged in the learning process (Cho 

et al., 2021). Conversely, if students feel that the media or methods used are irrelevant or 

uninteresting, they will likely demonstrate lower engagement (Lin, 2021; Yang et al., 2023). 

Several previous studies have identified internal and external factors affecting science learning. 

Britner & Pajares (2006) research shows that laboratory experiences and teacher feedback can 

influence students' self-efficacy in science. This influence was further corroborated by Tsai et al. 

(2011), who showed that students’ beliefs about science impact their learning approaches. Students' 

beliefs require visual representations, as Rutten et al. (2012) demonstrated, where PhET simulations 

effectively supported learning, emphasising physics concepts. 

Research on the interaction between internal and external factors was also conducted by Jansen 

et al. (2014), who explored how students’ perceptions of science learning are influenced by 

motivation and self-efficacy. This research aligns with the findings of Yang et al. (2023), where 

combining digital media and self-efficacy enhances student engagement in science learning. 

However, studies examining the interaction between these internal and external factors are limited, 

even though both are critical to science education. This study offers an opportunity to explore these 

factors more deeply and reveal how they influence science learning. 

This research is increasingly vital as it can provide a deeper understanding of how appropriate 

learning media can stimulate student interest and attention, as well as what innovations can be 

tailored to the diverse characteristics of students. Additionally, this research has the potential to offer 

solutions to the challenges faced by teachers in designing more effective and engaging science 

education processes. This study aims to identify and analyse the factors influencing science learning 

in the discovery model at schools, focusing on developing innovative strategies to address the 

existing challenges. 
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METHODOLOGY 
Research Design 

The research design employs a mixed-methods approach, integrating quantitative and qualitative 

methodologies to examine the relationships between variables while exploring the contextual 

dynamics in depth (Creswell & Creswell, 2018) concerning the factors influencing science learning. 

The quantitative approach tests the statistical relationships between variables, while the qualitative 

approach, through in-depth interviews with teachers, aims to understand classroom dynamics that 

cannot be statistically measured (Tashakkori & Teddlie, 2010). This design was chosen to provide a 

more comprehensive convergent validity regarding the factors affecting science education and how 

these factors interact with each other. 

 

Population and Sample 

The research population consists of eighth-grade students and teachers from junior high schools 

in the Special Region of Yogyakarta for the 2025 academic year, utilising the discovery model during 

the learning process. The selection of eighth-grade students is based on their age, approximately 13-

14 years, which corresponds to early adolescence. This age represents a significant period of 

psychological and social development, making it a key focus for research on behavioral changes, 

cognitive growth, and social development, which are closely tied to science education. The sampling 

technique employed is census sampling, resulting in a sample of 179 students and teachers, as shown 

in Table 1. This study uses source triangulation, involving data from students (quantitative) and data 

from teachers (qualitative), to provide a more holistic perspective on the research issue. Findings 

from both sources will complement each other, enhancing the research outcomes’ validity. 

 

Table 1. Sample Demographic 

Item Response Frequency 
Percentage 

(%) 

Class Type (code) VIII-A 31 17,3 

VIII-B 30 16,8 

VIII-C 31 17,3 

VIII-D 31 17,3 

VIII-E 30 16,8 

VIII-F 26 14,5 

Respondents’ Gender Male 85 47,5 

Female 94 52,5 

Lerning style Visual 38 21,2 

Auditory 53 29,6 

Kinesthetic 88 49,2 

Information Acces Very Available 26 14,5 

Available 142 79,3 

Not Available 11 6,1 

Very Not Available 0 0 

 

Instrument 

The primary instrument for collecting quantitative data is a questionnaire consisting of 4 

scales designed to measure the variables under investigation. The questionnaire employs a 4-point 

Likert scale for each item, facilitating data collection and statistical analysis. The instrument for 

collecting qualitative data is an interview guide for interviewing teachers. This interview guide will 

include open-ended questions to explore teachers' challenges, constraints, and needs in teaching 

science. 

 

  

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


109 

 

©2025 Copyright by the Science Education Association (Thailand). This article is licensed under CC BY-NC-ND 4.0. 

Data analysis 

Partial Least Squares Structural Equation Modeling (PLS-SEM) analysis was chosen for this 

study to examine the complex relationships between exogenous, mediating, and endogenous 

variables (Hair et al., 2019). PLS-SEM is well-suited for this research because it can handle relatively 

small sample sizes (Hair et al., 2017), measure both direct and indirect effects (Hair et al., 2011), and 

is compatible with exploratory models (Henseler, 2018). This study involves several variables 

derived from teacher interviews and developed into factors influencing science learning when 

teachers apply the discovery learning model. These variables are used to assess student perceptions 

as the subjects of science learning. 

Exogenous Variables (X) 

 X1: Self-efficacy 

 X2: Motivation 

 X3: Epistemological Beliefs 

 X4: Technology Readiness 

 X5: Curiosity 

 

Mediating Variable (Z) 

 Z: Engagement in Learning 

 

Endogenous Variables (Y) 

Y1: Perception of Learning Media effectiveness 

Y2: Perception of Learning Model’s 's effectiveness 

 

 

Figure 1. Research Framework 

The first step in PLS-SEM analysis is to conduct validity and reliability tests of the instruments. 

The analysis process begins with testing the validity and reliability of the instruments. Convergent 

validity is assessed through Confirmatory Factor Analysis (CFA) with the criteria of outer loading > 

0.7 and Average Variance Extracted (AVE) > 0.5 (Fornell & Larcker, 1981), while reliability is 

measured using Composite Reliability (CR) > 0.7 and Cronbach’s alpha > 0.7 (Nunnally, 1978). 

Model fit testing is not a requirement for PLS-SEM, as PLS-SEM emphasizes criteria such as 

construct validity and reliability, as well as predictive power, as the primary indicators of model 
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quality (Henseler et al., 2015). The next step is path analysis, where the path coefficients (β) and 

their significance are evaluated through bootstrapping with 5000 subsamples (Hair et al., 2017). 

Mediation effects are tested using Variance Accounted For (VAF), where values >20% indicate 

partial mediation and values >80% indicate complete mediation (Hair et al., 2017). The model’s 

predictive power is evaluated using R² (Chin, 1998) and Q² predictive relevance (Geisser, 1975), 

with effect size interpreted according to Cohen’s criteria (Cohen, 2013). 

Qualitative data obtained through in-depth teacher interviews are analyzed using a thematic 

approach (Braun & Clarke, 2006). The first step in this analysis is transcribing the interviews to make 

the data easier to interpret. Then, the transcribed data are coded by labeling the data units relevant to 

the studied topics. After coding, the researcher identifies the main themes from the interviews. These 

themes are then further analyzed to understand how each theme contributes to a deeper understanding 

of the challenges faced in science education. 

 

RESULTS AND DISCUSSION 
Construct Validity and Reliability 

The analysis results in Table 2 present various indicators related to the construct validity and 

reliability within the research model. Each construct is tested through multiple measurement items, 

which are evaluated based on loadings, weights, and several other statistical indices such as 

Composite Reliability (CR), Cronbach’s Alpha (CA), Average Variance Extracted (AVE), and 

Variance Inflation Factor (VIF). 

 

Table 2. Construct Validity and Reliability 

Constructs Items Loadings Weights CA CR AVE VIF 

Self-Efficacy (SE) X1.1 0.538  0.242  

0.630  0.766  0.402  

1.136  

X1.2 0.630  0.324  1.184  

X1.3 0.503  0.182  1.178  

X1.4 0.739  0.417  1.235  

X1.5 0.723  0.367  1.298  

Motivation (Mtv) X2.1 0.686  0.315  

0.719  0.816  0.471  

1.349  

X2.2 0.598  0.223  1.268  

X2.3 0.683  0.277  1.355  

X2.4 0.701  0.337  1.317  

X2.5 0.754  0.298  1.486  

Epistemological 

Beliefs (EB) 

X3.1 0.668  0.266  

0.718  0.815  0.470  

1.336  

X3.2 0.702  0.336  1.282  

X3.3 0.709  0.295  1.383  

X3.4 0.761  0.343  1.463  

X3.5 0.573  0.202  1.251  

Technology 

Readiness (TR) 

X4.1 0.766  0.281  

0.791  0.857  0.546  

1.603  

X4.2 0.767  0.271  1.608  

X4.3 0.646  0.238  1.307  

X4.4 0.773  0.306  1.555  

X4.5 0.737  0.253  1.550  

Curiosity (Csy) X5.1 0.811  0.292  

0.807  0.866  0.564  

1.850  

X5.2 0.751  0.305  1.482  

X5.3 0.697  0.192  1.558  

X5.4 0.754  0.254  1.611  

X5.5 0.738  0.284  1.492  

Y1.1 0.666  0.326  0.691  0.800  0.451  1.237  
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Constructs Items Loadings Weights CA CR AVE VIF 

Leaning Media 

(LMe) 

Y1.2 0.715  0.304  1.358  

Y1.3 0.794  0.365  1.539  

Y1.4 0.670  0.291  1.333  

Y1.5 0.471  0.171  1.130  

Learning Model 

(LMo) 

Y2.1 0.673  0.277  

0.719  0.816  0.471  

1.376  

Y2.2 0.598  0.224  1.386  

Y2.3 0.692  0.329  1.354  

Y2.4 0.725  0.307  1.398  

Y2.5 0.736  0.312  1.613  

Engagement in 

Learning (EiL) 

Z1 0.600  0.220  

0.676  0.793  0.435  

1.271  

Z2 0.697  0.304  1.354  

Z3 0.617  0.315  1.259  

Z4 0.743  0.309  1.519  

Z5 0.629  0.369  1.209  

 

Indicators such as X1.1, X2.1, X3.1, etc., act as observation variables used to measure and validate 

larger constructs in PLS-SEM. The relationship between these indicators and constructs is crucial to 

ensure that the model built accurately reflects the relationships present in the research data. Several 

indicator values are slightly lower than the generally accepted standards and, such as loadings below 

0.70 and Cronbach’s Alpha (CA) slightly below the ideal value of 0.70. However, in the context of 

exploratory research, these values be interpreted differently, and such values can be accepted with 

the justification that the goal of the research is to explore and understand phenomena in greater depth. 

This result is particularly true when the constructs or instruments are in the development stage. 

Exploratory research offers the flexibility to accept these values, provided there is strong justification 

regarding the relevance and contribution of the items in measuring the intended construct. 

The Self-Efficacy construct shows item loadings that vary, with the lowest value being 0.503 for 

item X1.3 and the highest value being 0.739 for item X1.4. Although some items have loadings lower 

than 0.70, such as X1.1 (0.538) and X1.3 (0.503), this can be accepted in the context of exploratory 

research. The Cronbach’s Alpha (CA) value for this construct is 0.630, slightly lower than the ideal 

0.70, but it is acceptable for exploratory research. The Composite Reliability (CR) value of 0.766 

indicates good reliability, suggesting that this instrument is reasonably consistent in measuring the 

Self-Efficacy construct. However, the Average Variance Extracted (AVE) value of 0.402 suggests 

that the indicators in this construct explain less than 50% of the variance in the construct, suggesting 

the potential for improving measurement in this construct in future studies. The Variance Inflation 

Factor (VIF) value of 1.136 indicates no significant multicollinearity among the items. 

The Motivation construct shows loading values ranging from 0.598 for item X2.1 to 0.754 for 

item X2.5, demonstrating a good contribution from each item to the construct. The Cronbach’s Alpha 

(CA) value of 0.719 indicates good reliability, exceeding the threshold of 0.70, which means the 

construct has a sufficiently strong internal consistency. The Composite Reliability (CR) value of 

0.816 affirms that the Motivation construct is highly reliable. Although the Average Variance 

Extracted (AVE) value is 0.471, slightly below 0.50, it falls within the tolerance limits for exploratory 

research. This construct’s Variance Inflation Factor (VIF) is 1.349, showing no significant 

multicollinearity among the items. 

The Epistemological Beliefs construct shows item loadings ranging from 0.573 for item X3.5 to 

0.761 for item X3.4, with several items having loadings slightly below 0.70, such as X3.5 (0.573). 

However, this is acceptable in the context of exploratory research. The Cronbach’s Alpha (CA) value 

of 0.718 indicates reasonably good reliability, exceeding 0.70. The Composite Reliability (CR) value 

of 0.815 indicates that this construct has good internal consistency. However, the Average Variance 

Extracted (AVE) value of 0.470 is slightly below 0.50, indicating that the indicators in this construct 

do not fully explain the variance within the construct. Nevertheless, this can be accepted in 
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exploratory research. The Variance Inflation Factor (VIF) value 1.336 also indicates no significant 

multicollinearity. 

The Technology Readiness construct shows excellent loadings ranging from 0.646 to 0.767, 

indicating strong contributions from all items in this construct. The Cronbach’s Alpha (CA) value 

for this construct is 0.791, indicating excellent reliability, exceeding the 0.70 threshold. The 

Composite Reliability (CR) value of 0.857 suggests that this construct has high internal consistency. 

The Average Variance Extracted (AVE) value of 0.546 indicates that the construct explains more 

than 50% of the variance in its indicators, suggesting that it has excellent convergent validity. The 

Variance Inflation Factor (VIF) of 1.603 indicates no significant multicollinearity in this construct. 

The Curiosity construct shows item loadings ranging from 0.697 to 0.811, with item X5.1 having 

the highest loading value. The Cronbach’s Alpha (CA) of 0.807 indicates excellent reliability, greater 

than 0.70, meaning this construct has very high internal consistency. The Composite Reliability (CR) 

value of 0.866 also shows excellent reliability, proving that this instrument is highly consistent in 

measuring the Curiosity construct. The Average Variance Extracted (AVE) value of 0.564 shows 

that this construct is very good at explaining the variance in its indicators, indicating strong validity. 

The Variance Inflation Factor (VIF) value of 1.850 indicates no significant multicollinearity in this 

construct. 

The Learning Media construct shows loadings ranging from 0.471 to 0.794, with item Y1.5 

having the lowest loading at 0.471, indicating that this indicator is less intense in measuring the 

Learning Media construct. The Cronbach’s Alpha (CA) value of 0.691 indicates reliability slightly 

below 0.70, but it is still acceptable for exploratory research. The Composite Reliability (CR) of 

0.800 indicates fairly good consistency, although some items show lower contributions. The Average 

Variance Extracted (AVE) value of 0.451 shows that this construct is not optimal in explaining the 

variance of its indicators, which should be addressed in future research. The Variance Inflation Factor 

(VIF) of 1.237 indicates no significant multicollinearity. 

The Learning Model construct shows loadings ranging from 0.598 to 0.736, with item Y2.2 

having the lowest loading (0.598). The Cronbach’s Alpha (CA) value of 0.719 indicates good 

reliability, exceeding 0.70, indicating that this construct has sufficiently strong internal consistency. 

The Composite Reliability (CR) of 0.816 shows that this construct is reliable in measuring the 

intended variable. The Average Variance Extracted (AVE) value of 0.471 indicates that the indicators 

in this construct do not explain more than 50% of the variance, which warrant attention in future 

studies. The Variance Inflation Factor (VIF) of 1.613 indicates no significant multicollinearity. 

The Engagement in Learning construct shows loadings ranging from 0.600 to 0.743, with item 

Z1 having the lowest loading (0.600) and Z4 having the highest (0.743). The Cronbach’s Alpha (CA) 

of 0.676 is slightly below 0.70 but is acceptable in exploratory research. The Composite Reliability 

(CR) of 0.793 indicates reasonably good internal consistency. The Average Variance Extracted 

(AVE) of 0.435 suggests that the indicators in this construct are less effective in explaining the 

variance, which requires attention. The Variance Inflation Factor (VIF) of 1.271 indicates no 

significant multicollinearity. 

Most of the constructs in this study show promising results in terms of reliability and validity, 

with Cronbach’s Alpha and Composite Reliability values generally above 0.70 and Average Variance 

Extracted (AVE) values indicating adequate convergent validity for most constructs. Some 

constructs, such as Learning Media, Self-Efficacy, and Engagement in Learning, show lower AVE 

values and loadings, suggesting a need for improvement in measurement in these constructs. 

However, the low VIF values across all constructs indicate no significant multicollinearity issues, 

and these results are acceptable in the context of exploratory research. 

In addition to construct validity and reliability presented in Table 2, the Heterotrait-Monotrait 

Ratio (HTMT) analysis serves as a crucial tool for assessing discriminant validity within Structural 

Equation Modeling (SEM). Discriminant validity ensures that each construct in the model is 

empirically distinct from others, indicating the absence of excessive overlap or overly strong 

correlations between constructs. HTMT offers a more robust measure of discriminant validity 

compared to traditional approaches, such as the Fornell-Larcker criterion, as it evaluates explicitly 
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the ratio between heterotrait correlations (i.e., correlations between different constructs) and 

monotrait correlations (i.e., correlations within the same construct). An HTMT value is deemed 

acceptable if it falls below a certain threshold, generally 0.85 or, in some cases, 0.90, indicating 

sufficient discriminant validity and suggesting that the constructs are distinct and not excessively 

interrelated. Conversely, HTMT values exceeding these thresholds signal construct overlap, thereby 

potentially compromising the model’s validity. 

 

Table 3. Heterotrait-Monotrait Ratio (HTMT) 
 Csy EiL EB LMe LMo Mtv SE 

Csy         

EiL  0.766        

EB  0.700  0.642       

LMe 0.715  0.640  0.635      

LMo 0.787  0.773  0.555  0.838     

Mtv  0.814  0.708  0.771  0.695  0.751    

SE  0.726  0.756  0.714  0.602  0.631  0.848   

TR  0.641  0.716  0.622  0.839  0.523  0.568  0.619  
Note: Self-Efficacy (SE); Motivation (Mtv); Epistemological Beliefs (EB); Technology Readiness (TR); Curiosity 

(Csy); Leaning Media (LMe); Learning Model (LMo); Engagement in Learning (EiL) 

 

Table 3 presents the HTMT calculation results used to evaluate discriminant validity within the 

SEM framework. Most HTMT values across constructs are below 0.85, indicating strong evidence 

of discriminant validity in the model. For instance, the HTMT value between Curiosity and 

Engagement in Learning is 0.766, which is below the 0.85 benchmark, suggesting these two 

constructs are empirically distinct and not overly redundant. Other pairings, such as those between 

Motivation and Self-Efficacy (0.848) and Learning Model (0.751), show relatively high correlations 

but remain within acceptable bounds, thus supporting their conceptual independence despite 

moderate associations. A few HTMT values, such as that between Technology Readiness and 

Learning Model (0.839), approach the threshold, potentially indicating some conceptual overlap. 

Nevertheless, the majority of HTMT values, such as those between Learning Media and 

Epistemological Beliefs (0.635), affirm adequate differentiation among the constructs. Overall, the 

HTMT results support the discriminant validity of the constructs employed, reinforcing their 

suitability for further analysis within the SEM framework. 

Model fit is a crucial step in statistical analysis used to assess the degree to which an estimated 

model aligns with the available data. The evaluation of model fit typically involves comparing the 

estimated model with a more complex or "saturated model," which encompasses all possible 

relationships among the variables. Several indicators are utilized to gauge the adequacy of the model 

fit (table 4), such as SRMR (Standardized Root Mean Square Residual), d_ULS, d_G, Chi-square, 

and NFI (Normed Fit Index). 

 

Table 4. Model Fit 
 Saturated model  Estimated model  

SRMR  0.086  0.087  

d_ULS  6.057  6.244  

d_G  1.616  1.644  

Chi-square  1502.229  1520.068  

NFI  0.533  0.528  

 

Based on the results in Table 4 derived from the model fit table, the model fit analysis between 

the saturated model and the estimated model reveals a satisfactory level of correspondence, despite 

some minor discrepancies in specific indicators. The SRMR values for both models are 0.086 for the 

saturated model and 0.087 for the estimated model, indicating an almost negligible difference 

between the two, both of which fall within the acceptable range (an SRMR value below 0.08 is 

https://creativecommons.org/licenses/by-nc-nd/4.0/deed.en


114 

 

©2025 Copyright by the Science Education Association (Thailand). This article is licensed under CC BY-NC-ND 4.0. 

typically considered indicative of a good fit). This result suggests that the estimated model effectively 

represents the interrelationships among the variables, closely approximating the more intricate 

saturated model. 

Subsequently, the d_ULS (Unweighted Least Squares) indicator for the saturated model is 6.057, 

while for the estimated model it is 6.244, revealing a negligible difference and implying that both 

models exhibit similar residual errors, regardless of the weights of the variables. The d_G indicator, 

serving as an alternative to d_ULS by accounting for the distribution of the variables, also yields 

comparable results: 1.616 for the saturated model and 1.644 for the estimated model, both of which 

suggest that the estimated model exhibits an excellent fit. 

The Chi-square test, which assesses how well the estimated model aligns with the observed data, 

provides a value of 1502.229 for the saturated model and 1520.068 for the estimated model. Despite 

the slight increase in the Chi-square value for the estimated model, this difference is marginal and 

does not indicate any significant issues with model fit. Finally, the NFI value for the saturated model 

is 0.533, while for the estimated model, it is 0.528, reflecting a slight decrease in the estimated model. 

However, both values remain within an acceptable range. Ideally, the NFI should be closer to 1. 

Overall, these results suggest that the estimated model demonstrates an excellent fit to the data, with 

minimal discrepancies when compared to the saturated model, implying that the estimated model can 

be deemed a sufficiently accurate representation of the relationships among the variables. 

 

Factors Affecting Science Learning 

The path analysis results test the direct relationships between the variables involved in this 

research model. This path analysis aims to identify each variable’s direct effects on the others and 

determine the significance of these relationships. The path analysis values indicate the strength of 

the relationships between the variables, while the p-value assesses the statistical significance of these 

relationships (Figure 2). 

 

 
 

Figure 2. Testing Hypothesis 
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Table 5. Path Coefficient 
 Sample mean Standard deviation T statistics 

Csy -> EiL 0.287 0.095 3.022 

Csy -> LMe 0.184 0.105 1.719 

Csy -> LMo 0.337 0.107 3.135 

EiL-> LMe 0.009 0.094 0.093 

EiL-> LMo 0.228 0.094 2.463 

EB-> EiL 0.061 0.092 0.639 

EB-> LMe 0.093 0.090 0.996 

EB-> LMo -0.017 0.089 0.200 

Mtv -> EiL 0.091 0.098 0.939 

Mtv -> LMe 0.173 0.115 1.536 

Mtv -> LMo 0.212 0.086 2.536 

SE-> EiL 0.154 0.080 1.815 

SE-> LMe 0.001 0.082 0.006 

SE-> LMo 0.062 0.090 0.606 

TR-> EiL 0.256 0.084 3.084 

TR-> LMe 0.412 0.090 4.497 

TR-> LMo -0.014 0.089 0.214 

 

The relationship between Curiosity and Engagement in Learning shows a significant result, with 

a p-value of 0.003, much smaller than the 0.05 threshold. The T-statistic value of 3.022 also indicates 

a strong and significant relationship. This result suggests that curiosity has a strong positive influence 

on engagement in learning. Therefore, it can be concluded that the higher an individual’s curiosity, 

the greater the likelihood that students will engage in the learning process. This finding aligns with 

the Self-Determination Theory (SDT), which states that curiosity, as intrinsic motivation, encourages 

active engagement (Ryan & Deci, 2020). Empirical studies by Litman (2005) also confirm that 

students with high curiosity tend to be more exploratory in their learning. 

The relationship between Curiosity and Learning Media shows a non-significant result (p-value 

= 0.086). Although these two variables have a positive influence, the p-value greater than 0.05 

suggests that the effect is not strong enough to be considered significant. This result indicates that 

while curiosity influence the use of learning media, its impact is not substantial within the context of 

this study. 

The relationship between Curiosity and Learning Model shows a significant positive effect (p-

value = 0.002, T-statistics = 3.135). The very small p-value and high T-statistics confirm this 

relationship is statistically significant. This result means that individuals with high curiosity tend to 

prefer or become more engaged with specific learning models, emphasizing the importance of 

curiosity in shaping one’s approach to learning. This finding is supported by von Stumm et al. (2011), 

who found that inquisitive individuals are likelier to choose inquiry-based learning methods. 

The relationship between Engagement in Learning and Learning Media shows no significant 

result (p-value = 0.926), indicating no direct and strong relationship between engagement in learning 

and the use of learning media in this study. Similar results were found for the relationships between 

Epistemological Beliefs and Engagement in Learning (p-value = 0.523) and Learning Media (p-value 

= 0.319), showing no significant influence. In other words, epistemological beliefs, or one’s views 

about knowledge, do not have a substantial enough impact on student engagement in learning or the 

use of learning media. 

Additionally, the relationship between Epistemological Beliefs and Learning Model is not 

significant (p-value = 0.842), suggesting that one’s view on how knowledge should be learned does 

not directly influence the learning model chosen by students. This finding implies that 

epistemological beliefs not be a significant factor in selecting or accepting a particular learning 

model. This result contrasts with previous studies (Hofer, 2000), suggesting that epistemological 
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beliefs affect learning approaches. The insignificance of this relationship also be due to the specific 

context of science learning in Indonesia, which is more structured (Tsai et al., 2011), and the less 

sensitive measurement of the construct (Schommer-Aikins, 2004). 

However, the relationship between Motivation and Learning Model shows a significant result (p-

value = 0.011, T-statistics = 2.536), indicating that motivation significantly influences the choice or 

acceptance of learning models. This result is consistent with the Expectancy-Value Theory (Eccles 

& Wigfield, 2002), which suggests that motivation affects the selection of learning strategies. 

However, the relationship between Motivation and Engagement in Learning (p-value = 0.348) and 

Learning Media (p-value = 0.125) is insignificant, indicating that while motivation plays a crucial 

role in selecting learning models, it does not significantly influence engagement levels or the use of 

learning media. This result is likely because extrinsic motivation is insufficient to drive deep 

engagement (Deci et al., 1999). 

The relationship between Self-Efficacy and Engagement in Learning shows a p-value of 0.070, 

slightly greater than 0.05. This result supports Bandura’s theory (Bandura, 1997) that self-efficacy 

plays a role in learning perseverance, but other factors moderate its effects. Although there is a 

positive influence between Self-Efficacy and Engagement in Learning, the effect is only marginally 

significant and needs further exploration in future research. On the other hand, the relationships 

between Self-Efficacy and Learning Media (p-value = 0.995) and Learning Model (p-value = 0.545) 

are insignificant, indicating that self-confidence does not directly influence the use of learning media 

or the chosen learning model. 

Meanwhile, Technology Readiness shows significant results in its relationship with Engagement 

in Learning (p-value = 0.002, T-statistics = 3.084) and Learning Media (p-value = 0.000, T-statistics 

= 4.497). This result indicates that technology readiness significantly influences engagement in 

learning and the use of learning media. These results are consistent with studies by Parasuraman 

(2000) and Dwivedi et al. (2019) regarding the role of technology in enhancing learning participation. 

High technology readiness tends to encourage individuals to engage more in learning and prefer or 

use the available learning media. However, the relationship between Technology Readiness and 

Learning Model is insignificant (p-value = 0.831), suggesting that technology readiness does not 

directly influence the learning model choice. 

The path analysis results show that variables such as Curiosity, Motivation, and Technology 

Readiness significantly affect several aspects of learning, particularly in the Learning Model and 

Learning Media. However, other relationships, such as those between Epistemological Beliefs, Self-

Efficacy, and Learning Media, do not show significant effects, suggesting that these factors not play 

a strong role in determining the selection or use of learning models and media. These findings provide 

important insights into the factors influencing the learning process and can be used to design more 

effective learning strategies based on the variables that have been proven significant. 

The findings of this study are supported by interviews with teachers, which provide a deeper 

understanding of the challenges faced in science education, particularly regarding learning models, 

learning media, and how student characteristics affect the learning process. One key finding from the 

interviews is that the implemented learning model strongly influences students’ needs. However, 

teachers face significant difficulties finding the right media or resources to stimulate students before 

the learning process begins, especially for more complex and abstract materials. 

 

The Relationship Between Learning Models, Media Limitations, and Student Needs 

The analysis process begins with transcribing the interviews to make the data easier to analyze, 

followed by coding to assign labels to data units relevant to the studied topics. After coding, the 

researcher identifies the main themes that emerge from the interviews, which are then further 

analyzed to understand how each theme provides deeper insights into the challenges faced in science 

education, particularly when implementing the discovery learning model. Table 6 presents the key 

findings obtained from the thematic analysis of the teacher interviews. 
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Table 6. Theme Result 

Theme Description Key Points 

Learning Model: 

Discovery Learning 

The discovery learning model increases 

student engagement in problem-based 

and discovery-based learning. 

Student Engagement, Problem 

Solving, Discovery-Based 

Approach 

Limitations of 

Learning Media 

Limitations in media that can stimulate 

students before learning begins, as well 

as a lack of suitable materials on 

common platforms. 

Material Access Limitations, 

Media Quality Limitations, 

Language Issues 

Need for 

Appropriate 

Learning Media 

Interactive and engaging media that can 

stimulate students’ critical thinking is 

required, especially for complex material. 

Student Engagement with 

Interactive Media, Visualization 

of Complex Material, Resource 

Limitations 

Development of 

Learning Media 

The development of more comprehensive 

learning media that aligns with the 

characteristics of learning models, such 

as discovery learning. 

Innovation in Media 

Development, Teacher Training, 

Collaboration with External 

Parties 

Collaboration and 

Resources 

Collaboration between schools and 

external parties to obtain relevant and 

affordable student resources. 

Enhancing Collaboration, 

Affordable Access for All 

Students 

Challenges in 

Implementing 

Discovery Learning 

The main challenge is the lack of suitable 

media to effectively support the 

implementation of the discovery learning 

model. 

Media Limitations in Model 

Implementation 

 

One of the key findings from the interviews is that the learning model applied in the classroom 

significantly influences how students learn, and therefore, students’ needs vary according to the 

approach used. Teachers often choose the discovery learning model to teach science content. This 

model, which emphasizes a problem-based and discovery approach, is highly effective in increasing 

student engagement. Students do not merely passively receive information; they are allowed to 

discover concepts through practical activities, experiments, and discussions. Discovery learning 

enables students to actively engage in the learning process by identifying real-world problems around 

them and solving them independently. The finding that discovery learning enhances student 

participation is consistent with Bruner (1961) research, which emphasizes the role of active learning 

in knowledge construction. This model allows students to develop understanding through self-

directed exploration (HMELO-SILVER et al., 2007). 

Although this model has proven effective in increasing student engagement, a significant 

challenge teachers face is the difficulty in providing learning media that can stimulate students before 

learning begins. Teachers’ difficulty in providing initial stimulation supports the criticism by 

Kirschner et al. (2006) that discovery learning requires adequate scaffolding, especially for complex 

content. The initial stimulus provided to students is critical in the discovery learning model because 

it can enhance students’ curiosity and prepare them to engage in learning more actively. However, 

not all content needed for discovery learning can be easily found on common platforms like 

YouTube. Many materials are unavailable or not processed in a way that stimulates the discussions 

or in-depth exploration required in discovery learning. 

The interview results also show that although some learning media, such as the PhET application 

for simulations, have been used, these media are not sufficient to address various learning needs, 

especially for more abstract or complex content. For instance, in science education, some abstract 

concepts, such as theories in physics or chemistry, require more concrete media to help students 
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visualize these concepts. While PhET provides visual simulations for certain concepts, these media 

often fail to cover all the aspects needed to optimize students’ understanding, especially for more 

complex concepts or material that cannot be easily simulated using available tools. The limitations 

of PhET simulations in visualizing abstract concepts align with er (2009)findings that the 

effectiveness of multimedia depends on its alignment with students’ cognitive levels. 

Additionally, limitations in the language used in learning media pose a separate issue. Some 

learning media use technical or mathematical language that be difficult for students to understand 

without additional explanation or teaching. When students encounter complex content that requires 

basic mathematical knowledge or specialized skills, they often struggle to understand the message 

conveyed through the media. The issue of understanding technical language reinforces Sweller 

(2010) cognitive load theory, where overly complex material can overload students’ working 

memory (Firdaus, Amelia, et al., 2025). Therefore, while various resources are available on the 

internet, not all are adequate to support discovery learning, requiring richer stimuli to trigger critical 

thinking and in-depth discussions. Media is needed based on the cognitive theory of multimedia 

learning (CTML), which integrates text, visuals, and interactivity (er, 2009). 

 

Media Needs Suitable for Learning Models 

Teachers stated that the learning media needed must be able to provide initial stimuli to students, 

so they are better prepared to engage in discovery-based learning activities and discussions. 

However, the existing media are often limited and do not always match the learning model’s 

characteristics. Students need more interactive and engaging media to introduce them to real-world 

problems relevant to the studied material and facilitate deep exploration. This result is significant for 

discovery learning, which requires stimuli that allow students to formulate problems, engage in 

discussions, and discover solutions independently. er (2004) research on prior knowledge activation 

in learning supports the finding that discovery learning requires strong initial stimuli. Teachers need 

media that can trigger students’ curiosity (Kang et al., 2009), present contextual problems (Hmelo-

Silver, 2004), and facilitate scaffolding (Quintana et al., 2004). 

Teachers revealed that videos or other media sources that can stimulate students’ understanding 

of more complex content are greatly needed, but the available resources often do not cover all the 

aspects needed to deliver the material in depth. Teachers also mentioned that visualization media for 

highly technical content or concepts requiring complex conceptual understanding are essential. 

Therefore, developing more innovative learning media, aligned with the characteristics of students 

and the learning models, is crucial to address these gaps. The limitations of visualization media for 

abstract concepts align with Kozma (2003) findings on the importance of multimodal representation, 

Ainsworth (2006) work on the functions of multiple representations, and de Jong et al. (2014) 

regarding inquiry-based simulations. 

Based on these findings, teachers suggest that to improve the quality of science learning, more 

comprehensive learning media must be developed that align with the applied learning model, such 

as discovery learning. Developing innovative media that can provide more effective stimuli is crucial, 

especially when teaching abstract or complex content. Teachers also expect further training on 

developing or adapting learning media to meet specific students’ needs, particularly in terms of 

visualizing material that is difficult to comprehend through theory or verbal explanations alone. 

Teachers’ suggestions about the need for innovative media are supported by Plass et al. (2020) 

principles of multimedia learning and Chen et al. (2019) on adaptive learning technologies. 

Moreover, it is important to enhance collaboration between schools and external parties, such as 

educational communities or offices, to obtain more relevant and suitable resources for learning needs. 

Teachers hope that the existing learning media can be more interactive, practical, affordable, and 

sufficient for all student characteristics, so that all students, regardless of their learning style, can 

gain maximum benefit. 

Although the discovery learning model has proven effective in increasing student engagement, 

providing the right learning media remains one of the main challenges teachers face. Students’ 

learning needs greatly depend on the learning model used, but the learning process cannot proceed 
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optimally without appropriate media to stimulate students. Therefore, there is a need for the 

development of more relevant and innovative learning media, which can help students better 

understand the material, especially complex or abstract content, and support the implementation of 

more active, discovery-based learning models like discovery learning. 

 

Exploring the Creation of Innovation 

Based on the path analysis results and interviews, we can conclude that stimuli support the 

learning process, particularly in the discovery learning model. The path analysis results show that 

Curiosity significantly impacts Engagement in Learning and the Learning Model, indicating that 

students’ curiosity plays a significant role in motivating their engagement in learning. However, to 

facilitate this process, teachers face a significant challenge in providing media to stimulate students 

before the learning begins. Therefore, developing effective stimulus media is essential to support the 

success of discovery learning. 

One key finding from the interviews is that in discovery learning, the initial stimulus process is 

significant for sparking students’ curiosity and preparing them to engage actively in learning. This 

stimulus motivates students and provides a context relevant to the material that will be studied. 

Therefore, effective stimuli will make it easier for students to formulate questions, identify problems, 

and find solutions in the discovery-based learning process. 

However, although students’ curiosity significantly impacts Engagement in Learning (p-value = 

0.003), the primary challenge teachers face is difficulty finding or developing the right media to 

stimulate students before the learning begins, especially with abstract content. Therefore, the media 

developed should be able to provide relevant stimuli and spark students’ curiosity so that they can 

become more deeply involved in this learning model. 

One leading solution proposed is the development of stimulus media based on real-world 

problems that can be directly related to the content to be learned. The interview results indicate that 

the discovery learning model requires stimulus based on real-world problems because it allows 

students to discover and solve issues relevant to their lives. The use of documentary videos or real-

world simulations presenting problems that students can study and solve is very effective in sparking 

students’ curiosity. 

For example, in science education, a video showing a natural phenomenon or a science 

experiment that triggers interesting questions could be used to provide the necessary stimulus. These 

videos should be presented challengingly, sparking curiosity, so students feel motivated to explore 

and discover the answers during the learning process. With real-world problem-based stimuli, 

students can connect learning to real life more easily and become more engaged in discovery learning 

activities. 

The interview results also found that collaboration with external parties, such as educational app 

developers or educational communities, is crucial for enhancing the quality of stimulus media used 

in learning. This collaboration can include the provision of technology-based teaching materials that 

are more in line with the needs of the discovery learning model. For instance, collaboration with 

virtual simulation development companies or web-based educational platforms can produce richer 

and more engaging stimulus media. 

Furthermore, collaboration between schools and other educational institutions can help provide 

more relevant and innovative resources (Firdaus, 2025), such as training courses for teachers on 

utilizing available stimulus media to support discovery-based learning models. With the help of 

technology and external resources, more varied and effective stimulus media can be developed to 

assist students in the learning process. 

To support the success of the discovery learning model, it is vital to develop stimulus media that 

aligns with the characteristics of students and the material being taught. Based on the path analysis 

results and interviews, Curiosity and Technology Readiness play significant roles in increasing 

student engagement, and therefore, the media used to stimulate students must be able to spark 

students’ curiosity and enhance active interaction in the learning process. Developing real-world 

problem-based media, interactive simulations, and collaboration with external parties are key to 
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creating effective media that supports discovery learning. Additionally, teacher training using 

relevant stimulus media is crucial in creating a more optimal learning experience. 

To enhance science learning, particularly within the context of the Discovery Learning model, 

various aspects of innovation must be considered. Innovations in science education aim to create a 

more interactive, engaging, and practical learning experience. The following table 7 outlines several 

aspects of innovation required to support and strengthen the learning process, along with concrete 

steps that can be taken to achieve these goals. 

 

Table 7. Innovation Framework 

No Aspect of Innovation Required Innovation 

1 
Identification of Factors Affecting 

Science Learning in Discovery Model 

Development of learning media that stimulates 

curiosity and supports student engagement. 

2 
Building Learning Media Relevant to 

Discovery Learning 

Development of multimedia-based media and 

interactive simulations that ease the understanding 

of scientific material. 

3 
Utilization of Technology to Enhance 

Engagement in Learning 

Integration of technology and educational 

platforms to support students' exploration of 

materials in a more contextual manner. 

4 
Enhancing Learning through 

Collaboration and External Resources 

Collaboration with educational app developers and 

other educational institutions to create more 

innovative media. 

5 
Teacher Training and Competence 

Development 

Organizing training for teachers on the use and 

adaptation of learning media and the latest 

technology. 

6 
Evaluation and Improvement of 

Learning Models and Media 

Continuous evaluation and refinement of learning 

media and the models used. 

7 
Creation of Problem-Based Learning 

Media for Real-World Issues 

Development of videos and simulations of real-

world problems relevant to the material taught to 

trigger students' curiosity. 

 

Research Limitation 

Several indicators suggest values below the generally accepted standards, potentially impacting 

the construct validity of the measurement. In the Self-Efficacy (SE) construct, several items exhibit 

factor loadings lower than 0.70, such as item X1.3 (loading = 0.503). This value indicates that the 

item contributes less to the measured construct due to various factors. The item is less pertinent, thus 

failing to adequately represent the dimension intended in the construct. Additionally, the sample 

population used lacks consistent experiences or perceptions concerning the item. This weakens the 

item’s relationship with the construct it is supposed to measure, thereby compromising the accuracy 

of the Self-Efficacy measurement. 

Furthermore, Cronbach’s Alpha (CA), which is slightly below 0.70 for certain constructs, such as 

Self-Efficacy (CA = 0.630), indicates lower internal reliability than the ideal threshold typically 

accepted. A lower CA can stem from inconsistencies in item responses or substantial variability 

between items measuring the same construct. For some constructs, items with divergent 

characteristics or focuses reduce the CA value, as these items are weakly correlated with one another. 

The Average Variance Extracted (AVE) for several constructs also yields suboptimal results, 

falling well below the 0.50 threshold. This is due to the presence of items with low measurement 

quality, resulting in their inability to account for the majority of the variance within the construct. A 

low AVE can also be attributed to an insufficient or unrepresentative sample size, which hinders the 

optimal relationship between items and the construct. In this context, while these items be acceptable 

in exploratory research, the low AVE values suggest that the construct validity requires further 

enhancement. 
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Implication for Practice 

Educators must design instructional strategies that stimulate students’ curiosity, particularly 

during the initial stages of learning. The use of learning media that sparks curiosity, such as 

experimental videos or real-world problems relevant to the topic being studied, can enhance student 

engagement. Curriculum designers should consider integrating elements that foster students’ 

inquisitiveness, such as incorporating problem-based tasks that encourage students to explore and 

discover scientific concepts. Policymakers should also allocate resources to support the development 

and dissemination of learning materials that stimulate curiosity and optimize students’ learning 

experiences. 

Moreover, this study reveals that interactive learning media, aligned with the discovery-based 

learning model, can significantly enhance students’ comprehension. Teachers should be trained to 

select and utilize media that not only conveys information but also encourages students to engage in 

critical thinking and active participation in learning. Curriculum developers must create materials 

that not only align with learning objectives but also support the use of diverse media, such as 

simulation applications or interactive multimedia tools, which enable students to grasp complex and 

abstract scientific concepts more effectively. Policymakers should ensure that the curriculum 

accommodates technological advancements that can enrich students’ learning experiences. 

Teacher training also plays a crucial role in the successful implementation of the research 

findings. Educators must be equipped with the skills to utilize technology-based learning media and 

effectively integrate them into their everyday instructional practices. Teacher training curricula 

should include the use of technology and the development of media suited to the characteristics of 

students and the needs of discovery-based learning. Curriculum designers must ensure that teacher 

training programs facilitate the development of practical skills related to the effective use of 

technology in education. Meanwhile, policymakers need to support continuous training programs to 

enable teachers to optimize the use of these tools in the learning process. 

 

CONCLUSION AND LIMITATIONS 
Conclusion 

This study reveals that various factors significantly influence science learning, particularly in the 

context of the discovery learning model. Curiosity has a substantial positive effect on student 

engagement and the choice of learning models, emphasizing the importance of intrinsic motivation 

in enhancing the learning experience. Technology readiness is another critical factor, showing a 

significant impact on engagement and the use of learning media, reinforcing the role of technology 

in facilitating active participation in the learning process. Motivation also plays a key role in selecting 

learning models, but its influence on engagement and media use is less pronounced. Conversely, 

factors like epistemological beliefs and self-efficacy showed minimal direct effects on engagement 

or the choice of learning media, suggesting that they not be as influential in the context of science 

learning in this study. Additionally, while discovery learning is a practical approach, the challenge 

remains in providing suitable media that can stimulate curiosity and engagement, especially for 

complex and abstract concepts. 

The findings are further supported by interviews with teachers, which underscore the critical need 

for effective learning media that can spark students’ curiosity and enhance their engagement. 

Teachers face significant challenges in providing the necessary stimuli before learning begins, 

particularly when dealing with abstract content. Therefore, there is a pressing need for innovative 

media that aligns with the discovery learning model, providing real-world problem-based stimuli to 

facilitate deep exploration and active learning. 

 

Limitations 

Despite the valuable insights gained from this study, several limitations should be acknowledged. 

Firstly, the sample size and context, which are specific to certain schools and regions, limit the 

generalizability of the findings to other educational settings. The study’s focus on specific variables 

such as curiosity, motivation, and technology readiness overlook other potential factors influencing 
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learning outcomes, such as social influences or cultural contexts. Furthermore, the study primarily 

relied on self-reported data from both students and teachers, which be subject to bias and 

inaccuracies. Another limitation is the lack of longitudinal data, as the study only provides a snapshot 

of the current situation without considering how the factors influencing learning evolve. Lastly, while 

the study highlighted the challenges teachers face in finding suitable media for discovery learning, it 

did not extensively explore potential solutions for overcoming these challenges or evaluate the 

effectiveness of existing media in a more controlled environment. Further research could address 

these limitations by exploring a broader range of factors, employing a more diverse sample, and 

considering the long-term effects of various learning models and media on student engagement and 

learning outcomes. 
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