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Abstract

This independent study is research how to apply
between the UAV technology, deep learning technology and
support vector machine (SVM) technical to detect building
in image. The image data source is come from PTT Public
Company Limited. In data preparation process will have sub
process as data selection process, data augmentation process
by crop, horizontal flips, rotation. The total data were split-
ted to 80% for training and 20% of testing. For model SVM,
the technic for feature extraction step is Histogram of Orient-
ed Gradient (HOG). For both model will vary value of many

parameters to find the best result of its.
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3.4.2 SVM Model
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4.1.2 Model SVM
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M 19 Accuracy Result Trend after 20 Round Training

with ReLu Function
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MW 24 Classification report after 20 rounds training with

categorical loss function
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WA 25 Classification report after 20 rounds training with

Binary loss function
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output:

y

mput: | (None, 150, 150, 3)

(None, 74, 74, 8)

Conv2D

output:

mput: | (None, 74, 74, §)

(None, 36, 36, §)

Conv2zD

output:

mput: | (None, 36, 36, §)

MaxPooling2D
; (None, 33, 35, 8)

output:

A

mput: | (None, 35, 35, 8)

(None, 16, 16, 16)

Conv2D

output:

mput: | (None, 16, 16, 16)

{None, 15, 15, 16)

MaxPooling2D

output:

mput: | (None, 15, 15, 16}

(None, 3600)

Flatten

output:

mput: | (None, 3600)

{None, 40)

Denge

output:

mput: | (None, 40)

(None, 20)

Dense
output:

mput:

{None, 20}
(None, 2}

Denge

output:

muii 27 Tnssaialuea CNN game
=\ 1 1 d[ 1 gl.l
Tagiszluanmanee 3 9mslszuianaunazns
= d‘ 1 <4 Y [V zi'
Imslasulasalunseuantiosaall

- Accuracy Training Dataset = 97%
- Accuracy Validate Dataset = 96.5%
- Loss Training Dataset = 0.18
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- Accuracy Test Dataset = 96%

- Loss Test Dataset = 0.22

- Precision = 0.96

- Recall = 0.97

- F1 Score = 0.97

daumaiiasvM Tuaafimnsaufigatlszneudae
Kernal = ‘rbf’, C=2, Gamma = ‘scale’ (Mmmmmﬁ Gamma
= 0.00329 GTlﬁpimmﬁﬁmmﬁumﬁ 1/(n_feature*Xvar))
Tagtsziiumnamdail

- Accuracy Test Dataset = 88.34%

- Precision = 0.88

- Recall = 0.94

- F1 Score = 0.91
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v

= I (% !
Fanansilseumeuny 2 IJJLﬂﬁW‘LIUWIlILﬂﬁ CNN

St

1 H 1 k aw o
Tianmanzaunnluaa SVM Gawamsise lanouTang
Tagiszasamsiteedensudau
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