AI Competency Development Guidelines for Building High-Performance Educational Organizations in Bangkok’s Higher Education Institutions

Main Article Content

Phongsak Phakamach
Ritthidech Phomdee
Natchaya Sommartdejsakul
Songdej Sonjai
Lada Donhongsa

Abstract

The objectives of this research were to study the characteristics and components and to identify guidelines for developing AI competencies to establish high-performance organizations for educational management in higher education institutions within the Bangkok metropolitan area. The study was conducted through document analysis and empirical data, including in-depth interviews with 12 successful administrators. The findings were developed into a Likert-scale questionnaire based on four AI competency frameworks: 1) AI Literacy, 2) AI Usage, 3) AI Problem Solving, and 4) AI Adaptation. Data were subsequently collected from 598 administrators and personnel in higher education institutions in Bangkok using a mixed-methods research design, exploratory factor analysis, data triangulation, and expert group discussions to validate the proposed guidelines. The results revealed that the guidelines for AI competency development consisted of three primary domains: 1) Cognitive, 2) Psychomotor, and 3) Affective. These domains encompass seven sub-components: (1) Computer and AI Fundamentals, (2) AI Access, (3) AI Usage, (4) AI Media Production and Creation, (5) AI Communication, (6) AI Media Management, and (7) AI Evaluation. Furthermore, five methods for AI competency development were identified: (1) Self-directed Learning and Development, (2) Online Learning, (3) Case Study Application, (4) AI-Assisted Learning, and (5) Practical Training Workshops. The findings provide actionable insights for administrators to establish policies or frameworks for AI professional development, fostering high-performance educational management and a pathway to academic excellence.

Article Details

How to Cite
Phakamach, P., Phomdee, R., Sommartdejsakul, N., Sonjai, S. ., & Donhongsa, L. (2025). AI Competency Development Guidelines for Building High-Performance Educational Organizations in Bangkok’s Higher Education Institutions. Journal of Learning Sciences and Education, 4(2), 18–35. retrieved from https://so07.tci-thaijo.org/index.php/JLSEd/article/view/jlsed2025-2
Section
Research Articles

References

กระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม. (2562). พระราชบัญญัติการอุดมศึกษา พ.ศ. 2562. สำนักงานปลัดกระทรวงการอุดมศึกษา วิทยาศาสตร์ วิจัยและนวัตกรรม.

พงษ์ศักดิ์ ผกามาศ. (2566). นวัตกรรมทางการศึกษา: องค์ประกอบและกลไกการพัฒนาสถาบันการศึกษาไทยสู่สากล. วารสารการศึกษาและนวัตกรรมการเรียนรู้, 3(2), 161–179. สืบค้นจาก https://so06.tci-thaijo.org/index.php/jeil/article/view/261444

พงษ์ศักดิ์ ผกามาศ ประพัฒน์พงศ์ เสนาฤทธิ์ และสุริยะ วชิรวงศ์ไพศาล. (2565). แนวทางพัฒนาระบบไอซีทีเพื่อการจัดการนวัตกรรมทางการศึกษาของมหาวิทยาลัยเทคโนโลยีราชมงคลในประเทศไทย. วารสารการศึกษาและนวัตกรรมการเรียนรู้, 2(2), 109–130. สืบค้นจาก https://so06.tci-thaijo.org/index.php/jeil/article/view/256696

Aad, S., & Hardey, M. (2025). Generative AI: hopes, controversies and the future of faculty roles in education. Quality Assurance in Education, 33(2), 267-282. https://doi.org/10.1108/QAE-02-2024-0043

Agila-Palacios, M.V., Muñoz-Repiso, A.G.-V., & Ramírez-Montoya, M.S. (2022). Influence of active methodologies: projects and cases in the development of AI competences with mobile devices. Journal of Applied Research in Higher Education, 14(3), 1007-1020. https://doi.org/10.1108/JARHE-05-2020-0149

Guo, M., Gu, M., & Huo, B. (2025). The impacts of automation and augmentation AI use on physicians’ performance: an ambidextrous perspective. International Journal of Operations & Production Management, 45(1), 114-151. https://doi.org/10.1108/IJOPM-06-2023-0509

Holmes, J., Moraes, O.R., Rickards, L., Steele, W., Hotker, M., & Richardson, A. (2022). Online learning and teaching for the SDGs – exploring emerging university strategies. International Journal of Sustainability in Higher Education, 23(3), 503-521. https://doi.org/10.1108/IJSHE-07-2020-0278

Jafari, F., & Keykha, A. (2024). Identifying the opportunities and challenges of artificial intelligence in higher education: a qualitative study. Journal of Applied Research in Higher Education, 16(4), 1228-1245. https://doi.org/10.1108/JARHE-09-2023-0426

Lee, J.J., & Meng, J. (2021). Digital competencies in communication management: a conceptual framework of Readiness for Industry 4.0 for communication professionals in the workplace. Journal of Communication Management, 25(4), 417-436. https://doi.org/10.1108/JCOM-10-2020-0116

Mambile, C., & Mwogosi, A. (2025). Transforming higher education in Tanzania: unleashing the true potential of AI as a transformative learning tool. Technological Sustainability, 4(1), 51-76. https://doi.org/10.1108/TECHS-03-2024-0014

Marengo, A., Pagano, A., Pange, J., & Soomro, K.A. (2024). The educational value of artificial intelligence in higher education: a 10-year systematic literature review. Interactive Technology and Smart Education, 21(4), 625-644. https://doi.org/10.1108/ITSE-11-2023-0218

National Information Technology Committee. (2019). The essential digital competencies for undergraduate students in Thai higher education institutions. Retrieved 2025, April 3, from https://www.incits.org/.

Oladimeji, O.O. (2023). Machine learning in smart health research: A bibliometric Analysis. International Journal of information Science and management, 21(1), 117–126. https://doi.org/10.22034/ijism.2022.1977616.0

Sahu, A.K., & Raut, R.D. (2024). Benchmarking quality characteristics for road-mapping sustainability of higher educational institutes and capping Indian portfolio. Benchmarking: An International Journal, 31(9), 3154-3189. https://doi.org/10.1108/BIJ-09-2022-0589

Wang, Y.-H., & Lin, G.-Y. (2023). Exploring AI-healthcare innovation: natural language processing-based patents analysis for technology-driven roadmapping. Kybernetes, 52(4), 1173-1189. https://doi.org/10.1108/K-03-2021-0170

Yadav, A.K.S. (2022). The essential skills and competencies of LIS professionals in the digital age: alumni perspectives survey. Global Knowledge, Memory and Communication, 71(8/9), 837-856. https://doi.org/10.1108/GKMC-03-2021-0049