The Application of ChatGPT to Enhance Collaborative Coding Learning in Computer Programming Courses The Application of ChatGPT to Enhance Collaborative Coding Learning in Computer Programming Courses

Main Article Content

Buaphan Khamchalour

Abstract

          This research aimed to: 1) investigate the application of ChatGPT in a collaborative learning model for a computer programming course, and 2) compare the learning achievement of students using ChatGPT with that of students in a traditional instructional setting. The study employed a quasi-experimental, two-group pretest-posttest design. The sample comprised 30 digital technology students from an academic institution, selected via inclusion criteria and simple random sampling. Participants were divided into a control group (n=15), which received conventional instruction, and an experimental group (n=15), which engaged in ChatGPT-integrated activities. Data were collected using a knowledge assessment (reliability = .877) and a skills evaluation form. The latter, validated by the researcher, demonstrated a content validity index between 0.67 and 1.00 and a reliability of .778. Data analysis was conducted using descriptive statistics, the Chi-square test, and an independent samples t-test.


          The results revealed that: 1) Students reported a high level of satisfaction with the use of ChatGPT in the learning process. 2) Post-experiment, the experimental group's average knowledge score (equation= 42.35, S.D. = 10.16) than the control group ( equation= 48.94, S.D. = 6.39) at the .05 level (p=.03). However, the experimental group achieved significantly higher programming skill scores (equation= 67.82, S.D. = 5.16) compared with the control group (equation= 48.64, S.D. = 6.37) at the .05 significance level (p < .001).

Article Details

How to Cite
Khamchalour, B. (2025). The Application of ChatGPT to Enhance Collaborative Coding Learning in Computer Programming Courses: The Application of ChatGPT to Enhance Collaborative Coding Learning in Computer Programming Courses. RATANABUTH JOURNAL, 7(3), 16–26. retrieved from https://so07.tci-thaijo.org/index.php/rtnb/article/view/8699
Section
Research Article

References

กฤตติพัฒน์ ชื่นพิทยาวุฒิ. (2566). ความก้าวหน้าของ ChatGPT และการวิจัยทางพฤติกรรมศาสตร์: การประยุกต์ใช้ประโยชน์ความเสี่ยงและประเด็นทางจริยธรรมในการวิจัย. วารสารพฤติกรรมศาสตร์, 23(2), 154–173.

เขมณัฏฐ์ มิ่งศิริธรรม .(2566). ChatGPT กับการศึกษายุคดิจิทัล ChatGPT and Education in the Digital Age. วารสารศิลปากรศึกษาศาสตร์วิจัย,15 (2),1-10.

ศโรชิน อาจหาญ .(2567). การใช ChatGPTเปนเครื่องมือพัฒนาทักษะการเขียนในรายวิชาภาษาฝรั่งเศสในสํานักงาน. วารสารมนุษยศาสตร์ มหาวิทยาเชียงใหม่,26(1), 8-41.

Chirawatkul, P. (2013). Success factors in community-based tourism in Thailand: The role of luck, external support, and local leadership. ResearchGate. Retrieved from https://www.researchgate.net/publication/271673922.

Faul, Erdfelder, Lang, & Buchner. (2007). G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175–191.

Kasneci, E., et al. (2023). ChatGPT for good? On opportunities and challenges of large language models for education. Learning and Individual Differences, 103, 102274.

Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of novice programmers. ACM SIGCSE Bulletin, 37(3), 14–18.

Likert, R. (1967). The human organization: Its management and value. New York: McGraw-Hill.

Makridakis, S. (2017). Forecasting the Impact of Artificial Intelligence. Foresight: The International Journal of Applied Forecasting, (47), 7–13.

Rudolph, J., Tan, S., & Tan, S. (2023). ChatGPT: Bullshit spewer or the end of traditional assessments in higher education? Journal of Applied Learning and Teaching, 6(1), 342–363.

Sarsa, S., et al. (2022). AI-assisted code explanation for novice programmers. Proceedings of the 2022 ACM Conference on Innovation and Technology in Computer Science Education, 218–224.