Marketing Mix Factors and Online Household Products Purchases in Sukhothai Province

Authors

  • Jenjira Rattana Faculty of business administration, Thong Sook College
  • Chitralada Trisakhon Faculty of business administration, Thong Sook College

DOI:

https://doi.org/10.60101/jla.2025.6.2.7127

Keywords:

marketing mix factors, purchasing decision, household products, online channels

Abstract

This research aims to: 1) study the level of online purchasing decision for household products among consumers in Sukhothai Province, 2) compare personal factors affecting the decision to purchase household products through online channels among consumers in Sukhothai Province, and 3) examine the marketing mix factors influencing the purchase of household products through online channels among consumers in Sukhothai Province. The sample for this study consisted of 400 consumers who purchase household products online in Sukhothai Province. Data were collected using questionnaires through simple random sampling. The analysis included frequency, percentage, mean, and standard deviation, while hypothesis testing was conducted using t-tests, one-way analysis of variance (ANOVA), and multiple regression analysis. The findings revealed that: 1) the overall decision-making to purchase household products through online channels among consumers in Sukhothai Province was at the highest level (ð‘ĨĖ„ = 4.22, SD = 0.38), with the highest-rated factor being "staff's immediate attention to customer service and after-sales service" (ð‘ĨĖ„ = 4.37, SD = 0.62), followed by "products regularly and consistently used" (ð‘ĨĖ„ = 4.24, SD = 0.61), 2) differences in personal factors, including gender, age, marital status, education level, occupation, average monthly income, expenditure on products, product types, purchasing frequency, and purchasing objectives, did not significantly affect consumers' decisions to purchase household products through online channels in Sukhothai Province at the 0.05 significance level, and 3) five marketing mix factors, including product, price, promotion, people, and process, had a statistically significant influence on consumers' online purchasing decisions at the 0.05 significance level, with a predictive power of 80.0%, while distribution channels and physical evidence factors did not significantly affect purchasing decisions.

References

āļāļąāļ™āļ•āđŒāļāļ™āļīāļĐāļāđŒ āļ§āļ‡āļĻāđŒāļšāļ§āļĢāļĨāļąāļāļĐāļ“āđŒ, āļ˜āļĩāļ—āļąāļ• āļ•āļĢāļĩāļĻāļīāļĢāļīāđ‚āļŠāļ•āļī, āđāļĨāļ°āļĻāļĢāļēāļĒāļļāļ—āļ˜ āđ‚āļŠāļ„āļŠāļąāļĒāļ§āļĢāļĢāļąāļ•āļ™āđŒ. (2560). āļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļĄāļĩāļœāļĨāļ•āđˆāļ­āļāļēāļĢāļ•āļąāļ”āļŠāļīāļ™āđƒāļˆāļ‹āļ·āđ‰āļ­āļŠāļīāļ™āļ„āđ‰āļēāļ—āļĩāđˆāļĢāļ°āļĨāļķāļāļ‚āļ­āļ‡āļ™āļąāļāļ—āđˆāļ­āļ‡āđ€āļ—āļĩāđˆāļĒāļ§āļŠāļēāļ§āļˆāļĩāļ™āļ—āļĩāđˆāļĄāļēāļ—āđˆāļ­āļ‡āđ€āļ—āļĩāđˆāļĒāļ§āđ€āļĄāļ·āļ­āļ‡āļžāļąāļ—āļĒāļē āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļĨāļšāļļāļĢāļĩ. āļ§āļēāļĢāļŠāļēāļĢāļ§āļīāļ—āļĒāļēāļĨāļąāļĒāļšāļąāļ“āļ‘āļīāļ•āļĻāļķāļāļĐāļēāļāļēāļĢāļˆāļąāļ”āļāļēāļĢ āļĄāļ‚, 10(2), 134-150.

āļāļīāļ•āļ•āļīāļ­āļģāļžāļĨ āļŠāļļāļ”āļ›āļĢāļ°āđ€āļŠāļĢāļīāļ, āļ‰āļąāļ•āļĢāđŒāļĢāļ§āļĩ āļ­āļ āļīāļ§āļĢāļēāļ‡āļ„āđŒāļžāļ‡āļĻāđŒ, āđāļĨāļ°āļšāļļāļāļāļīāļŠāļē āļ–āļķāļ‡āļ–āļīāđˆāļ™. (2566). āļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļ•āļąāļ”āļŠāļīāļ™āđƒāļˆāļ‹āļ·āđ‰āļ­āļŠāļīāļ™āļ„āđ‰āļēāļ­āļīāđ€āļĨāđ‡āļāļ—āļĢāļ­āļ™āļīāļāļŠāđŒāļ‚āļ­āļ‡āļāļĨāļļāđˆāļĄāļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„āđ€āļˆāđ€āļ™āļ­āđ€āļĢāļŠāļąāđˆāļ™āļ§āļēāļĒāļšāļ™āđāļžāļĨāļ•āļŸāļ­āļĢāđŒāļĄāļĨāļēāļ‹āļēāļ”āđ‰āļēāđāļĨāļ°āļŠāđ‰āļ­āļ›āļ›āļĩāđ‰. āļ§āļēāļĢāļŠāļēāļĢāļ§āļīāļŠāļēāļāļēāļĢāļŠāļĄāļēāļ„āļĄāļŠāļ–āļēāļšāļąāļ™āļ­āļļāļ”āļĄāļĻāļķāļāļĐāļēāđ€āļ­āļāļŠāļ™āđāļŦāđˆāļ‡āļ›āļĢāļ°āđ€āļ—āļĻāđ„āļ—āļĒ (āļŠāļŠāļ­āļ—.), 29(2), 54-69.

āļˆāļīāļ™āļ•āļ™āļē āļŠāļļāļĢāļīāļĒāļ°āļĻāļĢāļĩ. (2567). āļ„āļ§āļēāļĄāļŠāļąāļĄāļžāļąāļ™āļ˜āđŒāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļ—āļąāļĻāļ™āļ„āļ•āļīāļāļēāļĢāđ€āļĨāļ·āļ­āļāļ‹āļ·āđ‰āļ­āđāļĨāļ°āļāļēāļĢāļ•āļąāļ”āļŠāļīāļ™āđƒāļˆāļ‹āļ·āđ‰āļ­āļŠāļīāļ™āļ„āđ‰āļēāļ­āļ­āļ™āđ„āļĨāļ™āđŒāļ‚āļ­āļ‡āļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„āđƒāļ™āđ€āļ‚āļ•āļ­āļģāđ€āļ āļ­āđ€āļĄāļ·āļ­āļ‡āļˆāļąāļ‡āļŦāļ§āļąāļ”āļ­āļļāļ”āļĢāļ˜āļēāļ™āļĩ. āļ§āļēāļĢāļŠāļēāļĢ āļĄāļˆāļĢ āļžāļļāļ—āļ˜āļ›āļąāļāļāļēāļ›āļĢāļīāļ—āļĢāļĢāļĻāļ™āđŒ, 9(1), 189-202.

āđ€āļˆāļ“āļīāļ āļē āļ„āļ‡āļ­āļīāđˆāļĄ. (2566). āļ›āļąāļˆāļˆāļąāļĒāļ—āļĩāđˆāļĄāļĩāļ­āļīāļ—āļ˜āļīāļžāļĨāļ•āđˆāļ­āļāļēāļĢāļ•āļąāļ”āļŠāļīāļ™āđƒāļˆāļ‹āļ·āđ‰āļ­āļŠāļīāļ™āļ„āđ‰āļēāļœāđˆāļēāļ™āđāļ­āļ›āļžāļĨāļīāđ€āļ„āļŠāļąāļ™āļ­āļ­āļ™āđ„āļĨāļ™āđŒāļ‚āļ­āļ‡āļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„āļĒāļļāļ„āļ”āļīāļˆāļīāļ—āļąāļĨāđƒāļ™āļˆāļąāļ‡āļŦāļ§āļąāļ”āļ™āļ™āļ—āļšāļļāļĢāļĩ. āļ§āļēāļĢāļŠāļēāļĢāļžāļļāļ—āļ˜āļ™āļ§āļąāļ•āļāļĢāļĢāļĄāđāļĨāļ°āļāļēāļĢāļˆāļąāļ”āļāļēāļĢ, 6(4), 122-132.

āļ‰āļąāļ•āļĒāļēāļžāļĢ āđ€āļŠāļĄāļ­āđƒāļˆ. (2556). āļžāļĪāļ•āļīāļāļĢāļĢāļĄāļœāļđāđ‰āļšāļĢāļīāđ‚āļ āļ„. āļ‹āļĩāđ€āļ­āđ‡āļ”āļĒāļđāđ€āļ„āļŠāļąāđˆāļ™.

āļ“āļąāļāļ§āļĢāļĢāļ“ āđ€āļāļīāļ”āļĄāļļāļ‚, āļžāļīāļŠāļŠāļēāļ āļē āļĢāļąāļāļĐāļēāļžāļąāļ™āļ˜āđŒ, āļĻāļĻāļīāļ›āļĢāļ°āļ āļē āļ­āļīāļ™āļ—āļĢāļąāļāļĐāļē, āļŠāļīāļĢāļēāļ§āļĢāļĢāļ“ āļ›āļēāļ™āļĢāļ­āļ”, āļŠāļļāļ”āļēāļĢāļąāļ•āļ™āđŒ āļĻāļīāļĨāļ›āļ°āļĻāļĢ, āđāļĨāļ°āļ­āļēāļĢāļĩāļĒāļēāļ™āļĩ āļ™āļēāļĨāļĩ. (2567). āļŠāđˆāļ§āļ™āļ›āļĢāļ°āļŠāļĄāļāļēāļĢāļ•āļĨāļēāļ”āļšāļĢāļīāļāļēāļĢāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļ•āļąāļ”āļŠāļīāļ™āđƒāļˆāļ‹āļ·āđ‰āļ­āļŠāļīāļ™āļ„āđ‰āļēāļ­āļ­āļ™āđ„āļĨāļ™āđŒāļœāđˆāļēāļ™āđāļ­āļ›āļžāļĨāļīāđ€āļ„āļŠāļąāļ™ TikTok āļ‚āļ­āļ‡āļĨāļđāļāļ„āđ‰āļēāđƒāļ™āļˆāļąāļ‡āļŦāļ§āļąāļ”āđ€āļžāļŠāļĢāļšāļļāļĢāļĩ. Lanna Academic Journal of Social Science, 1(2), 62-75.

āļ˜āļĩāļ—āļąāļ• āļ•āļĢāļĩāļĻāļīāļĢāļīāđ‚āļŠāļ•āļī. (2566). āļŠāđˆāļ§āļ™āļ›āļĢāļ°āļŠāļĄāļāļēāļĢāļŠāđˆāļ‡āđ€āļŠāļĢāļīāļĄāļāļēāļĢāļ•āļĨāļēāļ”āļ­āļ­āļ™āđ„āļĨāļ™āđŒāđāļĨāļ°āļāļēāļĢāļĢāļąāļšāļĢāļđāđ‰āļ āļēāļžāļĨāļąāļāļĐāļ“āđŒāļ•āļĢāļēāļŠāļīāļ™āļ„āđ‰āļēāļ—āļĩāđˆāļŠāđˆāļ‡āļœāļĨāļ•āđˆāļ­āļāļēāļĢāļ•āļąāļ”āļŠāļīāļ™āđƒāļˆāļ‹āļ·āđ‰āļ­āļœāļĨāļīāļ•āļ āļąāļ“āļ‘āđŒāļžāļ·āļŠāļŠāļĄāļļāļ™āđ„āļžāļĢāļŦāļ™āļ­āļ‡āđ€āļŠāļ·āļ­ āļˆāļąāļ‡āļŦāļ§āļąāļ”āļ›āļ—āļļāļĄāļ˜āļēāļ™āļĩ. āļ§āļēāļĢāļŠāļēāļĢāļĄāļ“āļĩāđ€āļŠāļĐāļāļēāļĢāļēāļĄ āļ§āļąāļ”āļˆāļ­āļĄāļĄāļ“āļĩ, 6(6), 65-86.

āđ€āļžāđ‡āļāļĻāļĢāļĩ āđ€āļ‚āļĄāļ°āļŠāļļāļ§āļĢāļĢāļ“, āđāļĨāļ°āļ āļ„āļ§āļ”āļĩ āđ€āļĨāļīāļĻāļāļēāļāļˆāļ™āļ§āļąāļ•āļī. (2558). āļŦāļĨāļąāļāļāļēāļĢāļ•āļĨāļēāļ”. āļĻāļđāļ™āļĒāđŒāļŠāđˆāļ‡āđ€āļŠāļĢāļīāļĄāļ§āļīāļŠāļēāļāļēāļĢ.

āļ§āļīāļāļīāļžāļĩāđ€āļ”āļĩāļĒ. (2567). āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļļāđ‚āļ‚āļ—āļąāļĒ. https://th.wikipedia.org/wiki/āļˆāļąāļ‡āļŦāļ§āļąāļ”āļŠāļļāđ‚āļ‚āļ—āļąāļĒ

Aljohani, K. (2024). The role of last-mile delivery quality and satisfaction in online retail experience: an empirical analysis. Sustainability, 16(11), 4743. https://doi.org/10.3390/su16114743

Amornkitvikai, Y., Tham, S. Y., & Tangpoolcharoen, J. (2021). Barriers and factors affecting e-commerce utilization of thai small and medium-sized enterprises in food and beverage and retail services. Global Business Review, 26(3), 707-730. https://doi.org/10.1177/09721509211036294

Booms, B. H., & Bitner, M. J. (1981). Marketing strategies and organization structures for service firms. American Marketing Association.

Hawkins, D. I., Best, R. J., & Coney, K. A. (1998). Consumer behavior: building marketing strategy (7th ed.). McGraw-Hill.

Kotler, P., & Keller, K. L. (2016). Marketing management (15th ed.). Pearson Education.

Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607-610. https://doi.org/10.1177/001316447003000308

Ladkoom, K., & Thanasopon, B. (2020). Factors influencing reuse intention of e-Payment in Thailand: A case study of PromptPay. In Proceedings of the 22nd International Conference on Enterprise Information Systems - Volume 1: ICEIS, pp. 743-750. SciTePress. https://doi.org/10.5220/000941 0407430750

Malapane, T., & Ndlovu, N. (2024). Assessing the reliability of Likert scale statements in an e-commerce quantitative study: A Cronbach alpha analysis using SPSS statistics. In 2024 Systems and Information Engineering Design Symposium (SIEDS), pp. 90-95. https://doi.org/10.1109/SIEDS 61124.2024.10534753

MarGrath, A. J. (1986). When marketing services, 4Ps are not enough. Business Horizons, 29(3), 45-50. https://doi.org/10.1016/0007-6813(86)90007-8

Oana, D. (2020). The Impact of the current crisis generated by the COVID-19 pandemic on consumer behavior. Studies in Business and Economics, 15, 85-99. https://doi.org/10.2478/sbe-2020-0027

Prasetyo, Y. T., Tanto, H., Mariyanto, M., Hanjaya, C., Young, M. N., Persada, S. F., Miraja, B. A., & Redi, A. P. (2021). Factors affecting customer satisfaction and loyalty in online food delivery service during the Covid-19 pandemic: its relation with open innovation. Journal of Open Innovation: Technology, Market, and Complexity, 7(1), 76. https://doi.org/10.3390/joitmc7010076

Putri, S. O., Yahya, A. S., Attahira, A., Nabilasari, L. S., & Tamaela, V. (2023). Digital economy growth in Singapore and Thailand following the post-COVID-19 pandemic. Journal of Eastern European and Central Asian Research (JEECAR), 10(4), 557–568. https://doi.org/10.15549/jeecar.v10i4.1366

Ranganathan, P., Caduff, C., & Frampton, C. (2024). Designing and validating a research questionnaire - Part 2. Perspectives in Clinical Research, 15(1), 42-45. https://doi.org/10.4103/picr.picr_318_23

Schiffman, L. G., & Kanuk, L. L. (1991). Consumer behavior (4th ed.). Prentice Hall.

Tao, H., Sun, X., Liu, X., Tian, J., & Zhang, D. (2022). The impact of consumer purchase behavior changes on the business model design of consumer services companies over the course of COVID-19. Frontiers in Psychology, 13, Article 818845. https://doi.org/10.3389/fpsyg.2022.818845

Walters, C. G. (1974). Consumer behavior: Theory and practice (Rev. ed.). Richard D. Irwin.

Downloads

Published

2025-12-30

How to Cite

Rattana, J. ., & Trisakhon, C. (2025). Marketing Mix Factors and Online Household Products Purchases in Sukhothai Province . Journal of Liberal Arts RMUTT, 6(2), 87–98. https://doi.org/10.60101/jla.2025.6.2.7127

Issue

Section

Research Article